
*angl elnU iest

ThRbtc nttt

T4 H I2

'OBOTIC

aS.TT ehnclRpr

'4 U MRSTTE i

Appave 4wp~

1989 Year End Report
Autonomous Planetary Rover at Carnegie Mellon

William Whittaker Takeo Kanade Tom Mitchell
Principal Investigators

CMU-RI-TR-90-04

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

February 1990T

@1990 Carnegie Mellon University

This research was sponsored by NASA under Grant NAGW- 1115. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of NASA or the United States Government.

D IhBUTON STArE~~ A

£ fo 1

. ~ ~ ~ ~ ~ ~ ~ ~ u~ n II I I I II I II d

Unclassified

ECURITY CLASSIFICATION OF THIS PAGE -Am

REPORT DOCUMENTATION PAGE
a. UfPOcrT SECdjRJTYCLASSIFICATION lb. RESTRICTIVE MARKINGS

!a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
?b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited

,. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMLf-RI -TR-90-04

Sa. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Robotics Institute (if applicable)

Carnegie Mellon University I
5c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Pittsburgh, PA 15213

Ba NAME OF FUNDING/SPONSORING 18b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONI (If applicable)

NASA Grant NAGW-1175

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM N PROJECT TASK WORK UNIT
ELEMENT NO. INO. NO, ACCESSION NO.

11. TITLE (Include Security Classification)

1989 Year End Report: Autonomous Planetary Rover at farngqie Mellon

12. PERSONAL AUTHOR(S) William Whittaker, Takeo Kanade, and Tom Mitchell

13a. TYPE OF.REPORT 113b. TIME COVERED 114. DIT OF REPO T Yar, Month, Day) us. 2GE COUNT
technica I FROM TO , feruary j 4u

16. SUPPLEMENTARY NOTATION

COSATi CODES 18. oUBJECI (EfIVIS (Continue on reverse it necessary anct identify by block number)

FIELD I GROUP I SUB-GROUP I
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report describes progress in research on an autonomous robot for planetary exploratio
performed during 1989 at The Robotics Institute, Carnegie mellon University. The report
begins with an introduction, summary of achievements, and lists of personnel and publications
It also includes several papers resulting from the research.

The research program includes a broad agenda in the development of an autonomous mobile
robot. In the year covered by this report. we addressed two key topics:

Six-Leged Walking Robot. To overcome shortcomings exhibited by existing wheeled and
walk r--obot mechanisms, we configured the Ambler as a walking robot. The fundamental advan
tage of the Ambler configuration--which has implications for efficiency, mechanism modeling,
and control simplicity--is that actuators for body support are independent of those for pro-
pulsion' a subset of the planar joints propel the body, and the vertical actuators support
and level the body over terrain. During 1989 we configured, desiqned, and constructed the
Ambler. In addition, we developed models of its dynamics, and studied leveling control. (Ov)
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

MIUNCLASSIFIED/UNLIMITEO 0 SAME AS RPT. Q3 OTIC USERS Unclassified
22a, NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I 22c. OFFICE SYMBOL

D FORM 1473. 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

ECURITY CLASiSIFICATION OF THIS PAGE

(19 contd)

Integrated Single Leg Walking. We implemented and tested an integrated system capable of
walking with a single leg over rugged terrain. A prototype of an Ambler leg is suspended
below a carriage that slides along rails. To walk, the system uses a laser scanner to find
a clear, flat foothold, positions the leq above the foothold, contacts the terrain with the
foot, and applies force enough to advance the carriage along the rails. Walking both forward
and backward, the system has traversed hundreds of meters of rugged terrain including obstacle
too tall to step over, trenches too deep to step in, closely spdced rocks, and sand hills. In
addition, we conducted preliminary experiments with concurrent planning and execution, and
developed a leg recovery planner that generates time and power efficient 3-D trajectories
using 2-D search.

Mobile Manipulation with Hero Robot. indoor mobile manipulator tasks include collecting
cups from the lab floor, retrieving printer output, and recharging when its battery gets low.
The robot monitors its environment, and handles exceptional conditions in A robust fashion.
Fzr oxample, it uses vision to track the appearance and disappearance of cups, uses onboard
sonars to detect imminent collisions, and monitors battery level periodically.

This research is primarily sponsored by the National Aeronautics and Space Administration.
Portions of this research are also supported by the National Science Foundation and the
Defense Advanced Research Projects Agency.

SECURITY CLASSIFICATION OF THIS PAGE

Contents

introduction 1

Overview . .. 1

Accomplishments . 1

Personnel 8

Publications 9

Inverse Dynamic Models for Force Control of Compliant, Closed-Chain Mechanisms . 13

D. Manko and W. Whittaker

A Perception System for a Planetary Explorer. 19

M. Hebert, E. Krotkov, and T. Kanade

Experience with a Task Control Architecture for Mobile Robots. 25

L.-J. Lin, R. Simmons, and C. Fedor

AooOussiof For

NTIS ICGA&I
rDTIC TAB0

Unal~linced C01

By
D i -tribut~l=/

AvailabiltVCodes8

/ Ajvail and/or

tat spocial

List of Figures

1 Ambler configuration 2
2 Single leg testbed. 4
3 Composite elevation map 5
4 Obstacle course 6
5 Simulated Ambler on synthetic terrain. 7

Abstract

This report describes progress in research on an autonomous robot for planetary exploration
performed during 1989 at the Robotics Institute, Carnegie Mellon University. The report begins
with an introduction, summary of achievements, and lists of personnel and publications. It also
includes several papers resulting from the research.

The research program includes a broad agenda in the development of an autonomous mobile
robot. In the year covered by this report, we addressed two key topics:

Six-Legged Walking Robot - To overcome shortcomings exhibited by existing wheeled and
walking robot mechanisms, we configured the Ambler as a walking robot. The fundamental
advantage of the Ambler configuration-which has implications for efficiency, mechanism
modeling, and control simplicity-is that actuators for body support are independent of
those for propulsion; a subset of the planar joints propel the body, and the vertical actu-
ators support and level the body over terrain. During 1989 we configured, designed, and
constructed the Ambler. In addition, we developed models of its dynamics, and studied
leveling control.

Integrated Single Leg Walking - We implemented and tested an integrated system capable of
walking with a single leg over rugged terrain. A prototype of an Ambler leg is suspended
below a carriage that slides along rails. To walk, the system uses a laser scanner to find a
clear, flat foothold, positions the leg above the foothold, contacts the terrain with the foot,
and applies force enough to advance the carriage along the rails. Walking both forward
and backward, the system has traversed hundreds of meters of rugged terrain including
obstacles too tall to step over, trenches too deep to step in, closely spaced rocks, and sand
hills. In addition, we conducted preliminary experiments with concurrent planning and
execution, and developed a leg recovery planner that generates time and power efficient
3D trajectories using 2D search.

Mobile Manipulation with Hero Robot - Indoor mobile manipulator tasks include collecting
cups from the lab floor, retrieving printer output, and recharging when its battery gets low.
The robot monitors its environment, and handles exceptional conditions in a robust fashion.
For example, it uses vision to track the appearance and disappearance of cups, uses on-
board sonars to detect imminent collisions, and monitors battery level periodically.

This research is primarily sponsored by the National Aeronautics and Space Administration.
Portions of this research are also supported by the National Science Foundation and the Defense
Advanced Research Projects Agency.

Introduction

This report reviews progress during 1989 at the Robotics Institute, Carnegie Mellon University,
on research sponsored by NASA titled "Autonomous Planetary Rover." This report begins with

an overview and a summary of achievements. It then lists the members of the research group(supported by, or directly related to the contract, and their publications. Finally, it includes three
detailed papers representative of specific areas of research.

Overview

7The pg tdelop an Earth-based prototype of an autonomous planetary rover is

organized around three teams that are developing the locomotion, perception, and planning sub-
systems. A joint task is to integrate the three subsystems into an experimental robot system. We
will use this system for evaluating, demonstrating, and validating the concepts and technologies
developed in the program.

The technical objectives of the research include the following:

To develop and demonstrate an autonomous Earth-based mobile robot that can survive,
explore, and sample in rugged, natural terrains analogous to those of Mars'

To provide detailed, local representations and broad, 3-D descriptions of rugged, unknown
terrain by exploiting diverse sensors and data sources; A P j-9

' To demonstrate robot autonomy through a planning and task control arcbitepture that
incorporates robot goals, intentions, actions, exceptions, and safeguards. .

Accomplishments

This section describes key accomplishments of the project research from January 1989 to De-

cember 1989. We present these accomplishments in three parts: the first includes all activities
related to construction of the Ambler'; the second includes those activities related to integrated
walking; the third covers other activities.

1An acronym for Autonomous MoBiLe Exploration Robot.

1

Figure 1: Ambler configuration

Ambler

A major accomplishment of 1989 was to reconfigure, design, and build the six-legged walking
machine. Using all six legs, we demonstrated body motion (lift, advance) and leg recovery
(circulation between stacks). These first steps of the Ambler are a significant project milestone.

Configuration - We reconfigured the earlier Ambler designs to have two stacks, with six
circulating legs (Figure 1). Each leg is a rotary-prismatic-prismatic orthogonal leg. The
configuration enables level body motion, a circulating gait, conservatively stable gaits,
high mobility, and many sampling deployment options.

Design - We detailed the relative leg link scale, duplicated components when possible, and
augmented our efforts with results from a prototype leg testing program. Also in the
design process we identified worst cases for structural loads, drivetrain loads, power, and
link speeds. We made a number of key design decisions: to use aluminum as our primary
material; to equip all axes with spur gear drives; to outfit the prismatic links with linear
bearings; to incorporate separate slipring units in each leg; to have shoulders ride not

2

on each other but on a central shaft; and to construct the superstructure from aluminum
instead of composites.

Fabrication - As we completed designs, we began fabrication but continued to alter them

slightly to simplify assembly. An intensive effort to put all the pieces together culminated
in a complete vehicle in December.

Electronics and Sensing - We designed and implemented a variety of electronic devices to
link computing, actuation, and the physical mechanism. We established signal paths to
provide machine status-including drive train, positions, and forces-to computing. To
reduce the number of cables required, we designed and built a high-speed multiplexor that
provides real-time data transmission of analog and digital signals. We built a tether to
carry all signals to and from the machine. The tether is 46m of protective fabric sheathing
that contains 130 shielded twisted pairs, 30 coaxial cables, and power cables. To ensure
safe operation of the machine, we implemented a three state finite state machine safety
circuit that allows manual control, computer control, and provides graceful termination
upon certain conditions.

Real-Time Controller - We have developed a real-time controller based on VME hardware
and the VxWorks operating system. Multiple processors synchronize input/output and
motion control. Creonics motion control cards receive encoder feedback and amplifier
status signals, and transmit motor command and amplifier control signals. Digital boards
route signals for brake control, the safety circuit interface, and force sensor control. Up
to 64 A/D converter channels read signals from the force sensors, absolute encoders, and
inclinometers.

Mechanism Modeling - We formulated two models for the Ambler mechanism: a com-
prehensive model and a planar model. The comprehensive model incorporates non-
conservative foot-soil interactions in a full non-linear dynamic formulation. We employed
it for performance evaluations such as assessment of power consumption, potential for
tipover, and foot slippage, and continue to use it to develop body leveling control algo-
rithms. We used the second, planar model to evaluate mechanism designs and to investigate

joint driving configurations for propulsion.

3

RAMS

ca~LASER

, i-

Figure 2: Single leg testbed

Integrated Walking

We implemented and tested an integrated system capable of walking with a single leg over
rugged terrain. A prototype of the Ambler leg is suspended below a carriage that slides along
rails (Figure 2). To walkc, the system uses a laser scanner to find a foothold, computes an efficient
trajectory to the foothold, contacts the terrain with the foot, and applies force enough to advance
the carriage along the rails. Walking both forward and backward, the system has traversed
hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep
to step in, closely spaced rocks, and sand hills. The implemented system consists of a numbcit
of task-specific processes (two for planning, two for perception, one for real-time control, briefly
described below) and a central control process that directs the flow of communication between
processes. With this system we experimented with extensions to support concurrency and error
recovery.

4

Task Control Architecture - We implemented the Task ConcTrol Architecture (TCA) and used
it to integrate the various components of the walking system. TCA provides a number
of important facilities for building and operating complex robot systems. In particular, it
provides mechanisms to support message passing between distributed processes, hierarchi-
cal planning, plan execution, monitoring the environment, and exception handling. Using
TCA the system consists of a number of task-specific processes and a central control
process that directs the flow of communication between modules.

Real-Time Controller - We implemented a real-time control system for the single leg. This
system, which runs under the VxWorks operating system, communicates via the TCA,
moves the leg and carriage and reports their positions, and handles asynchronous interrupts
generated by the Creonics motion control boards.

Perception using Elevation Maps - We implemented a perception system to build elevation
maps from sequences of range images. In addition to the elevation, the system computes
the elevation uncertainty, local slope, visibility, and foothold goodness (measure of ter-
rain flatness in a foot-size neighborhood). The system executes approximately 20 x 106
instructions to build a 400 point map. In parallel, we developed techniques for matching
long sequences of range images and for merging them stochastically into a composite map
(Figure 3), and conducted experiments in updating satellite maps from local data.

Figure 3: Composite elevation map

This map was built by matching 125 Erim range images acquired by the Autonomous Land Vehicle as it
traversed a 40m path (right to left), including a 30 degree left turn, at an outdoor site in Colorado. The
matching between consecutive range images was performed by first matching features to obtain an initial
estimate of the displacement, and then using that estimate to seed an iterative minimization procedure.

5

Planning - We developed and implemented two planning modules: the Gait Planner and the
Leg Recovery Planner. The Gait Planner determines leg sequencing, body trajectory, and
foothold location. The Leg Recovery Planner generates trajectories that avoid obstacles and
minimize an objective function of time and energy. It plans three-dimensional trajectories
while searching a two-dimensional space, which reduces computation time substantially.

Single Leg Walking Experiments - We conducted a series of experiments and demonstra-
tions using the Single Leg Testbed. For the first stage of testing, we levelled the terrain and
did not alter it between runs. We began with a minimal set of processes, and incrementally
added processes. For the second stage of testing, we executed the same processes, and
walked over different terrains. We began with level ground, and graduated to succes-
sively more difficult terrain. Figure 4 shows an obstacle course that the integrated system
traversed more than 30 times, and the elevation map built by the perception system.

t 11.0

-*1* 4.4

Figure 4: Obstacle course

The obstacle course consists of a small obstacle (upside down basket, lower right), a box (right) too tall
for the leg to step over, a "steeplechase" arrangement of pylons (center) lying on the ground, two larger
obstacles (left and upper center) separated by about 1m, and a dozen or so smaller obstacles.

The perception system built this elevation map from approximately five range images acquired at different
positions. The labels indicate metric units in the global reference frame, where 0 < X < 3 and 4 < Y < 12.
The map resolution is 10cm.

6

Other Activities

Mobile Manipulator Testbed - At the Mobile Manipulator Testbed we developed and tested
advanced TCA features such as monitors, task tree management, temporal constraints,
exception handling, and resource allocation. Using these features, a Hero robot successfully
demonstrated several tasks: cup collection, retrieval of printer output, delivering objects
to workstations, recharging its battery, using on-board reflexive procedures to detect and
react to imminent collisions. We also achieved substantial progress toward a number of
other capabilities, including navigation based on sonar, learning to approach and recognize
objects, and learning stimulus-response action rules.

Simulator - We developed a simulation system on a Titan supercomputer (Figure 5). Capa-
bilities include three-dimensional solid and kinematic models of the six-legged Ambler,
generation and display of synthetic terrain (rocks, hills, craters, etc), and acquisition of
synthetic range images of terrain.

Figure 5: Simulated Ambler on synthetic terraln

7

Personnel

The following personnel were directly supported by the project, or performed related and con-
tributing research in 1989:

Faculty: Martial Hebert, Katsushi Ikeuchi, Takeo Kanade, Chelva Kumar, Eric Krotkov, Tom
Mitchell, Reid Simmons, Chuck Thorpe, William Whittaker.

Staff: Brian Albrecht, Purushothaman Balakurnar, Gary Baun, Mike Blackwell, Kevin Dowl-
ing, Christopher Fedor, Kerien Fitzpatrick, Joe Hirsch, Regis Hoffman, Ralph Hyre, Jim Martin,
Clark McDonald, Jim Moody, Dave Pahnos, Henning Pangels, Gerry Roston, Kevin Ryan, Jay
West, David Wettergreen.

Visiting Scientists: Jim Blythe, Claude Caillas, Herve Delinguette, Bao Xin Wu.

Graduate Students: John Bares, Lonnie Chrisman, Richard Goodwin, Goang Tay Hsu, In So
Kweon, Long-Ji Lin, David Manko, Peter Nagy, Ming Tan.

Undergraduate Students: Steve Baier, Jonathan Burroughs, John Greer, Nathan Harding,
Chris Ivory, Susan Kane, Nina Koros, Terry Lim, Eric Miles, Sundip Patel, Naeem Shareef,
Hans Thomas, Rob Wolpov, Kurt Zimmerman.

8

References

[1] J. Bares. Orthogonal Legged Walkers for Autonomous Navigation of Rugged Terrain.
December 1988. Ph.D. Thesis Proposal, Department of Civil Engineering, Carnegie Mellon
University.

[2] J. Bares, M. Hebert, T. Kanade, E. Krotkov, T. Mitchell, R. Simmons, and W. Whittaker.
Ambler: An Autonomous Rover for Planetary Exploration. IEEE Computer, 18-26, June
1989.

[3] J. Bares and W. Whittaker. Configuration of an Autonomous Robot for Mars Exploration.
In Proc. World Robotics Conf. on Robotics Research: The Next Five Years and Beyond,
pages 37-52, Gaithersburg, Maryland, May 1989.

[4] J. Bares and W. Whittaker. Orthogonal Legged Walking Robot. December 1988. United
States Patent Application.

[5] J. Bares and W. Whittaker. Orthogonal Legged Walking Robot CIP. May 1989. United
States Patent Application.

[6] C. Caillas. Autonomous robot using infrared thermal camera to discriminate objects in
outdoor scene. In Proc. SPIE Conf. Applications of Artificial Intelligence VIII, Orlando,
Florida, To appear, April 1990.

[7] C. Caillas. Imaging Sensing to Identify Footfall Positions for a Legged Robot. In Second
Workshop on Military Robotic Applications, Royal Military College of Canada and Civil
Institute of Environmental Medicine, Kingston, Ontario, August 1989.

[8] C. Caillas, M. Hebert, E. Krotkov, I. S. Kweon, and T. Kanade. Methods for Identifying
Footfall Positions for a Legged Robot. In Proc. IEEE International Workshop on Intelligent
Robots and Systems, pages 244-250, Tsukuba, Japan, September 1989.

[9] C. Fedor, R. Hoffman, G. Roston, and D. Wettergreen. Software Standards and Guidelines.
Technical Report PRWP-89-2, Robotics Institute, Carnegie Mellon University, 1989.

[10] C. Fedor and R. Simmons. Task Control Architecture User's Manual. Technical Re-
port PRWP-89-1, Robotics Institute, Carnegie Mellon University, 1989.

[11] Planetary Rover Group. Experiments in Perception, Planning, and Control for the Carnegie
Mellon Mars Rover. December 1988. Robotics Institute, Carnegie Mellon University,
unpublished working document.

9

[12] Planetary Rover Group. Integration of Perception, Planning, and Control in the Carnegie
Mellon Mars Rover. December 1988. Robotics Institute, Carnegie Mellon University,
unpublished working document.

[13] M. Hebert, T. Kanade, E. Krotkov, and I. S. Kweon. Terrain Mapping for a Roving Planetary
Explorer. In Proc. IEEE Robotics and Automation Conf., pages 997-1002, Scottsdale,
Arizona, May 1989.

[14] M. Hebert, T. Kanade, and I. Kweon. 3-D Vision Techniques for Autonomous Vehicles.
Technical Report CMU-RI-TR-88-12, The Robotics Institute, Carnegie Mellon University,
1988.

[15] M. Hebert, E. Krotkov, and T. Kanade. A Perception System for a Planetary Explorer. In
Proc. IEEE Conf. on Decision and Control, Tampa, Florida, December 1989.

[16] R. Hoffman and E. Krotkov. Terrain Roughness Measurement from Elevation Maps. In
Proc. SPIE Conf. on Advances in Intelligent Robotics Systems, Mobile Robots IV, Philadel-
phia, Pennsylvania, November 1989.

[17] T. Kanade, T. Mitchell, and W. Whittaker. 1988 Year End Report: Autonomous Plan-
etary Rover at Carnegie Mellon. Technical Report CMU-RI-TR-89-3, Carnegie Mellon
University, January 1989.

[18] E. Krotkov, J. Bares, M. Hebert, T. Kanade, T. Mitchell, R. Simmons, and W. Whit-
taker. Design of a Planetary Rover. 1988 Annual Research Review, The Robotics Institute,
Carnegie Mellon University, 9-24, 1989.

[19] E. Krotkov, C. Caillas, M. Hebert, I. S. Kweon, and T. Kanade. First Results in Terrain
Mapping for a Roving Planetary Explorer. In Proc. NASA Conf. on Space Telerobotics, Jet
Propulsion Laboratory, Pasadena, California, January 1989.

[20] E. Krotkov, G. Roston, and R. Simmons. Integrated System for Single Leg Walking. Tech-
nical Report PRWP-89-3, Robotics Institute, Carnegie Mellon University, 1989.

[21] I. S. Kweon. Modeling Rugged 3-D Terrain from Multiple Range Images for Outdoor
Mobile Robots. July 1989. Ph. D. Thesis Proposal, School of Computer Science, Carnegie
Mellon University.

[22] 1. S. Kweon, M. Hebert, and T. Kanade. Perception for Rugged Terrain. In Proc. SPIE
Mobile Robots III Conf., Society of Photo-Optical Instrumentation Engineers, Cambridge,
Massachusetts, November 1988.

10

[23] I. S. Kweon, M. Hebert, and T. Kanade. Sensor Fusion of Range and Reflectance Data for
Outdoor Scene Analysis. In Proc. NASA Workshop on Space Operations, Automation, and
Robotics, NASA Conf. Publication 3019, pages 373-382, Dayton, Ohio, July 1988.

[24] L.-J. Lin, T. Mitchell, A. Phillips, and R. Simmons. A Case Study in Robot Exploration.
Technical Report CMU-RI-TR-89-1, Robotics Institute, Carnegie Mellon University, Jan-
uary 1989.

[25] L.-J. Lin, R. Simmons, and C. Fedor. Experience with a Task Control Architecture for
Mobile Robots. Technical Report CMU-RI-TR-89-29, Robotics Institute, Carnegie Mellon
University, 1989.

[26] S. Mahalingam. Terrain Adaptive Gaits for the Ambler. Master's thesis, Department of
Mechanical Engineering, University of North Carolina, 1988.

[27] S. Mahalingam and W. Whittaker. Terrain Adaptive Gaits for Walkers with Completely
Overlapping Leg Workspaces. In Proc. Robots 13, pages 1-14, Gaithersburg, Maryland,
May 1989.

[28] D. Manko. Models of Legged Locomotion on Natural Terrain. June 1988. Ph.D. Thesis
Proposal, Department of Civil Engineering, Carnegie Mellon University.

[29] D. Manko and W. Whittaker. Inverse Dynamic Models used for Force Control of Compliant
Closed-Chain Mechanisms. In Proc. ASME Design and Automation Conf., pages 61-66,
Montreal, August 1989.

[30] D. Manko and W. Whittaker. Planar Abstraction of a Prototype Walking Machine. In
Proc. 20th Pittsburgh Conf. on Modeling and Simulation, pages 1817-1823, Pittsburgh,
Pennsylvania, May 1989.

[31] P. Nagy. Attitude and Altitude Control for a Novel 6-Legged Robot. January 1989. Re-
search Prospectus, Mechanical Engineering Department, Carnegie Mellon University.

[32] P. Nagy. Coordinated Compliant Motion Control for Multi-Legged Walking Vehicles on
Rugged Terrain. January 1990. Ph.D. Thesis Proposal, Department of Mechanical Engi-
neering, Carnegie Mellon University.

[33] P. Nagy and W. Whittaker. Experimental Program for the CMU Mars Rover Single Leg
Testbed. In Proc. 20th Pittsburgh Conf. on Modeling and Simulation, pages 1825-1829,
Pittsburgh, Pennsylvania, May 1989.

[34] P. Nagy and W. Whittaker. Motion Control for a Novel Legged Robot. In Proc. IEEE
Symp. Intelligent Control, pages 2-7, Albany, New York, September 1989.

11

[35] R. Simmons and T. Mitchell. A Task Control Architecture for Autonomous Robots. In
Proc. NASA Workshop on Space Operations Automation Research, Houston, Texas, July
1989.

[36] R. Simmons and T. Mitchell. A Task Control Architecture for Mobile Robots. In Proc.
AAAI Spring Symposium, Stanford, California, March 1989.

[37] C. Thorpe. Outdoor Visual Navigation for Autonomous Robots. In Proc. Intl. Conf. on
Intelligent Autonomous Systems, pages 530-544, Amsterdam, Netherlands, December 1989.

12

INVERSE DYNAMIC MODELS USED FOR FORCE CONTROL OF
COMPLIANT, CLOSED-CHAIN MECHANISMS

D. J. Manko and W. L Whittaker
Field Robotics Center

Carnegie Mellon University
Schenley Park, Pennsylvania

ABSTRACT 2. BACKGROUND

A general inverse dynamic model is presented that is applicable to An inverse dynamic model is obtained by substitution of specified
mechanisms incorporating member, joint and base compliance. coordinate trajectories into the equations of motion developed for the
Previous approaches for defining inverse dynamic models of compliant system. For non-compliant mechanisms, all coordinate trajectories can
mechanisms have been approximations or limited to simple mechanism be specified because rigid body motions completely define the system
geometries and open-chain mechanisms. Hence, the motivation for a kinematics. Alternately, inverse dynamic models for compliant
more general approach. Inverse dynamic equations for compliant mechanisms are complicated by the fact that trajectories cannot be
mechanisms modeled with and without constraint equations are shown specified a priori for the deflection variables which model the system
to be solvable sets of differential/algebraic equations (DAE's); relevant compliance. In general, deflection variables are not directly controlled
characteristics and solutions of DAE systems are .discussed. An (Le., applied forces equal to zero) so it is inappropriate to presume that
important application for inverse dynamic models of compliant motions of a deflection variable can be specified. Responses of the
mechanisms is model-based force control of closed-chain mechanisms. deflection variables are unknown quantities that are calculated along
The formulation and solution procedures discussed in this paper have with the required actuator forces to produce the specified joint motions.
been successfully applied to model legged locomotion on natural
teran. An approximate approach for formulating inverse dynamic models

of compliant mechanisms is to impose inertial loads on a flexible, static
1. INTRODUCTION mechanism model for deflection calculations (Dado 861. The inertial

loads used in the analysis are obtained from the kinematics of the
An inverse dynamic model of a mechanism is an application of the mechanism considering it to be ideally rigid. Although this method is

equations of motion for a system where joint trajectories are defined, relatively simple to implement, it does not account for the coupling
and the actuator forces and interaction forces required to produce these between joint and deflection variables which limits its application to
motions ae calculated. (In contrast, a forward dynamic model is used relatively slow moving mechanisms. Also, time dependent deflection
to calculate mechanism motions in response to a set of applied forces.) response is not considered.
Calculations of these forces are useful for sizing members and
actuators during the mechanism design phase. Additionally, The inverse dynamic model for a compliant, 2 dof cylindrical arm
computationally fast versions of the model can be incorporated into [Forrest-Barlach 87] was obtained by substitution of dynamic
model-based control schemes. An important application is model- equations for the deflection variables (where the deflection variables are
based force control of closed-chain mechanisms where the constraint or defined as functions of the joint variables) into the remaining dynamic
interaction forces (e.g., foot forces for a walking machine) are sampled equations corresponding to the joint variables. The resulting joint
quantities. The inverse dynamic model provides estimates of these variable equations are fourth order differential equations requiring joint
interaction forces, which may be used as control set points. trajectory planning of both jerk and jerk rate. The approach of

eliminating deflection variables from the equations of motion can only
The following section of this paper discusses existing methods for be accomplished for relatively simple systems.

defining inverse dynamic models of compliant mechanisms. A general
formulation of inverse dynamic models for compliant mechanisms The finite element method was used to discretize the equations of
modeled with and without constraint equations is described in Section motion for open-chain mechanisms having structural flexibility [Bayo
3. The resulting inverse dynamic equations are shown to be sets of 88]. An inverse dynamic model was obtained by specifying
differential/algebraic equations (DAE's) after substitution of specified trajectories for a subset of the detlection variables which decouples the
joint motions. Relevant characteristics and solution procedures for equations for an individual link. Joint torques required to produce a
DAE systems ae considered in Section 4. The system index (which desired end effector motion were calculated using an iterative solution
correlates with solution difficulty) of compliant mechanism, inverse scheme. Specification of trajectories for a subset of the deflection
dynamic models are defined in Section 5 of this paper, identifying the variables is not appropriate for all compliant systems (e.g., a
system index assures that stable and accurate numerical solutions can mechanism on a compliant base).
be calculated by the methods described in Section 4.

13

3. COMPIANT MECHANISM INVERSE DYNAMIC EQUATIONS [in + 11 + X + m3] it k. + a;

3.1 Mechanisms Modeled Without Constraint Ecuations F'(x x.y.z) = 0
The equations of motion (before substitution of specified joint

trajectories) for open-chain and closed-chain mechanisms (rigid or k2
compliant), where motions are defined in terms of an independent set
of generalized coordinates (q), have the following form, 0= kmi + in2 + m3 +

ni, m + n 2 + in3 12+"11 2
M(q)4 = f(q. ,t)

Substitution of joint trajectories into the equations of motion for a non- 0 = [-YC)D2 + ti+lCI2 Y 3fSC]

compliant mechanism results in straightforward evaluation of joint '% + MI + " 2 + X; + Y3+a F2(x'Y"t) -0

forces. Alternately, substitution of trajectories into the equations of -kn.
motion for a compliant mechanism and conversion to standard form 0 =
(discussed in Section 4) results in a coupled set of first order ' I'l + l2 + mn 12+ Y3 + aL4
differential and algebraic equations (DAE's).

The planar manipulator on a vertically compliant base shown in where: CL, oa. a, cLa - modified constants
Figure 1 is used to illustrate formulation of an inverse dynamic model
for compliant mechanisms modeled without constraint equations. The Fig. 3 Dynamic Equations in Standard DAE Form for a Planar
planar mechanism has the dynamic equations shown in Figure 2 after Manipulator on a Vertically Compliant Base
substitution of joint trajectories (all joints must be powered to produce
a controlled motion) and conversion to state space form. Gaussian
elimination of derivative terms from the joint variable equations results Inverse dynamic solutions for compliant mechanisms modeled
in the standard form equations shown in Figure 3 where the differential without constraint equations are calculated by first integrating the
equations correspond to the vertical deflection variable and the differential equations for the mechanism deflections. The solved
algebraic equations correspond to the joint variables. The joint variable deflections are then substituted into the algebraic equations to obtain the
!ynan.c equatious always reduce to algebraic equations while the joint forces required to produce the desired motions. The two part
deflection variable equations remain as differential equations for any solution is possible because the differential equations are decoupled
compliant mechanism modeled without constraint equations. from the algebraic equations (i.e., independent of the joint forces) as

shown in Figure 3.
M-1 3.2 Mechanisms Modeled With Constmint Euations

The equations of motion (before substitution of specified joint
trajectories) for closed-chain mechanisms have the following form

M(qq " f(q.q,t) + G(q).
Th2 12 (q) = 0

Twhere 6'

X - Lagrange multipliers

x 0(q) - constraint equations

The closed kinematic chains are enforced with algebraic constraint
F = k equations and Lagrange multipliers in the above equations.

For non-compliant mechanisms, the constraint equations are
identically satisfied by the specified joint trajectories so these equations

Fig. 1 Planar Manipulator on a Vertically Compliant Base provide no useful information for the inverse dynamic model. The
number of unknowns (joint and constraint forces) may exceed the
number of available dynamic equations for inverse dynamic models of

+ ml + M2 + m] -i = kx + a, closed-chain, non-compliant systems. This occurs when the number
of actuated joints is greater than the number of system dofs. In such
cases, an infinite number of possible force solutions exist for a given

jtZ = x) trajectory. Many of the possible solutions correspond to actuator
conflict where powered joints act in an isometric (i.e., non-productive)
manner. An example of actuator conflict is shown in Figure 4 for aI'l + - 2 + 'n] it = Yl + a7 non-compliant four bar linkage.

[M1 8 'n3 CD2 + :n3l,, 3 1 k, 2 + ("3

'n'C9 ax - y3 + *

whre = 80, x2 =, o. y, = Fl. y2 = T2. y3 = rU
, a2 , N- consnts Fig. 4 An Example of Actuator Conflict for a Non-Compliant, Four

Fig. 2 Dynamic Equations in State Space Form for a Planar Bar Linkage
Manipulator on a Vertically Compliant Base

14

When a closed-chain mechanism has compliance in each closed , i +
kinematic chain, the inverse dynamic solution is determinate for any +, 2C+ 1C023 = pz2 + 12C2. + lC'3
number of actuated joints because opposing actuator forces result in
deformation that distributes internal forces. The compliance must be S+ ++ + , = + + 8+ + "2SG + 1S0
arranged so that no mechanism motion is rigidly constrained for the PY 01 idt

+ 3 2 1 2 3 2
problem to be determinate. Otherwise, the degree of indeterminacy
would be reduced and not eliminated dependent on the number of e22 + 32 0 -. 03 =0
constraint equations that are no longer applicable. When sufficient 2 3
system compliance exists for the inverse dynamic solution to be
determinate considering all joints to be actuated, the mechanism will be where, (p., pyI), (Py PY2) manipulator base positions
refcred to as fully compliant

All joints in a closed-chain mechanism do not have to be powered to Fig. 6 Constraint Equations for Two Rigidly Connected, PManar
produce a controlled mechanism motion. The existence of a Manipulators on Independent, Vertically Compliant Bases
determinate, inverse dynamic solution for a less than fully compliant.
closed-chain mechanism is dependent on having an unactuated joint
with a specified trajectory in each closed kinematic chain corresponding The inverse dynamic equations have the functional form shown in
to an eliminated constraint equation. (Constraint equations cannot be Figure 7 after substitution of the joint trajectories and conversion to
eliminated for fully compliant. closed-chain mechanisms because state space form. Gaussian elimination of derivative terms from the
deflection variables are present in these equations.) If a joint is dynamic equations for joint variables having defined trajectories (i.e..
unpowered (i.e., its trajectory is unknown) in a fully compliant, d12, 032 and 02) results in the standard form equations shown in
closed-chain mechanism, the corresponding joint motion is governed Figure S. The differential equations correspond to deflection and joint
by the deflection variables in aidition to the constraint equations. variables having unspecified motions while the algebraic equations
Either a trajectory or force., but not both, is specified for each joint of a correspond to constraint equations and joint variables with specified
fully compliant. closed-chain mechanism because the unknown t=cto-wes.
deflection variables and constraint forces affect the unspecified
quantity. ML[xj= A(xy) + B

The inverse dynamic model of a compliant mechanism modeled
with constraint equations is obtained by substitution of the defined joint where: B - constat vector
trajectories into the equations of motion for the system; conversion of
the equations to standard form results in a coupled set of DAE's. An original variables
example of two rigidly connected, planar manipulators on independent
vertically compliant bases shown in Figure 5 is used to illustrate state space variables
formulation of an inverse dynamic model for compliant mechanisms
modeled with constraint equations. The constraint equations given in / - 1 Ai -i k. 6 , ;3 ;3. i. - ,
Figure 6 enre compaability at the end-effectors. Joints d12, 2 and
032 were considered to be powered which results in a determinate i, i1 is ;4 ii c4 i7 I, Sq 13 Yz Y YS
solution. (If. in addition, joints 92, and 03, were considered to be 1 33 y;

powered, the first and third constraint equations would be eliminated MU MU3a 0.3 MIA
and the inverse dynamic solution would become indeterminate.)

mua m mu m 1
m3 1 MU MUJ 0 M12 rn/ta m.5 mej mgA

I M I MU03Ie. 3 MUM. I

3d-3

4 roll=3.5 0
X, "

0M

M W 0

k2 0

Fig. 7 Dynamic Equations in State Space Form for Two Rigidly
=k. Connected, Planar Manipulators on Independent. VerticallyI Compliant Bases

Fig.5 Two Rigidly Connected. Planar Manipulators on Independent,
Vertically Compliant Bases

15

The dynamic equations for joint variables having defined trajectories
original variables reduce to algebraic equations whilethe constraint equations remain as

algebraic equations for any compliant mechanism modeled with
stat space variables constraint equations. Also, the dynamic equations for joint and

deflection variables having unspecified motions remain as differential
il dii 831 Le2 Sol d1 l %1 031 6m F12 922 132 X1 X2 X3 equations. The difference between inverse dynamic models for

systems modeled with and without constraint equations is the
-x x X3 X6 1X 7 X 9 11 o Y1 Y2 Y3 Y4 yS y6 additional algebraic (constraint) equations of the former. These

additional equations serve to couple the differential and algebraic
equations of the inverse dynamic model through the Lagrange

• k,*o, X2 multipliers; this eliminates the possibility of separate solutions (as for
" " ")2 systems modeled without constraint equations). Relevant

characteristics of DAE systems are considered below so that
" " " .. -3 appropriate solution techniques can be defined for inverse dynamic

models of compliant mechanisms modeled with constraint equations.

kn -A2 4. DIFFERENTIAL/ALGEBRAC EQUATIONS

A coupled set of DAE's, which are also described as singular
systems of differential equations (McClamroch 86], can be expressed
in the following standard form

A(x.y) I

Fl (X,x,y,t) - 0

F2(xyt) - 0

1= 0 * X Systems of DAE's cannot be solved directly using numerical
methods intended for ordinary differential equations (ODE's); an

T1 * X, equation transformation or special numerical techniques must be
considered. A singularity measure of a set of DAE's is given by its
index (or nilpotency) and the solution difficulty increases as the index

..... increases [Petzold 82]. The index of a system is determined by
transforming the set of equations into canonical form and observing the
siz of the coefficient matrix for the non-state variables (i.e., variables
not having any derivative terms). An alternate approach for

where: * - indicates a non-zei entry determining the index [Gear 88) is to count the required number of
differentiations of the algebraic equations to produce a set of ODE's.

Fig. 7 (cont'd) Dynamic Equations in State Space Form for Two The forward dynamic model of a closed-chain mechanism is shown
Rigidly Connected, Planar Manipulators on Independent, Vertically [Petzold 861 to be index 3 or index 2 when position or velocity

Compliant Bases coustaints are defined, respectively.

Solutions to determinate systems of DAE's can be obtained by
FI(x.i,y,t) = 0 substituting backward difference formulas (BDF) for the derivative

expressions and solving the resulting set of simultaneous equations
F2(x,y,t) - 0 iteratively using Newton's method [Gear 7 11. (There are no proven

optimization techniques for indeterminate DAE systems except for the
where: F1(x.i,yt) - same as first 10 equations of Figure 7 preliminary work in (Lotstedt 84].) For a general system of DAE's,

the Jacobian matrix used in Newton's method is
original variables

/ state space variables aFF + %1111 aF I

-- Xl 2 3 14 X X 6 X7 X G4 X* XO Yl Y2 Y3 Y4 Ys Y6 5Tj

where h - stepsize
" FI2 6

" T- " -3 I . BDF coefficient

2(zy.t) - "n * A unique solution exists if the Jacobian is non-singular. An
. . obvious requirement for an invertible Jacobian is that F2/dy be non-

singular, which is an altemate definition of an index I system (Lotstedt
" " 0 86]. For this reason, index I DAE systems can be readily solved using

_ J BDF substitution and Newton's method with little more difficulty than
solving ODE's. A mathematically precise requirement for a unique
solution to exist is that the Schur complement [Cottle 74) of the above

Fig. 8 Dynamic Equations in Standard DAE Form for Two Rigidly matrix must be non-singular. This explains why solutions can be
Connected. Planar Manipulators on Independent, Vertically obtained for certain higher order systems (i.e., index greater than 1)

Compliant Bases where aF2/y is singular. A solvable index 2 system has non-zero
rows of WF y that are linearly independent [Lotstedt 861.

16

The rm in solving index I systems, solvable index 2 systems and
index 3 mechanical systems of DAEs using a constant stepsize BDF is original variables
O(bk) Lotatedt 86), where k is the ordra of the difference expression
and h is the stepsize The use of variable stepsizes is difficult because 5stat saevriables
the nomal ernr definitons used for ODEs can be completely incorrect
for DAE's as a result of the non-state variable contributions. A suitable I F12 T= T3 2)L, ;,2),3
erwr definition used for variable stepsize control of DAE systems is /
discussed in [Petzold 821. Y1 Y2 Y3 Y4 Y5 Y6

A method for reducing the index of a set of DAE's [Gear 881 is to
differentiate the constraint equations to poduce a DAE system with an 1
index that is one lower for each differentiation. Taken to the extreme,
this approach can result in a system of ODE's. Since the ODE system is I * * 1
equivalent to the orginal DAE system, calculated solutions will depend
on differentials of state variables, non-state variables and input aF/Ay- 1 1
functions; any discontinuities in the latter can result in non-defined
solutions. Similarly, consistent initial conditions that satisfy not only the 0
constraint equations but derivatives of the constraint equations are
esendal; otherwise, errors in the initial conditions will contaminate the 0
solution.

0
5. EQUATION INDEX OF COMPLIANT MECHANISM INVERSE

DYNAMIC MODELS where: - indicates a non-zero entry

The inverse dynamic equations of motion for a compliant Fig. 10 aF2/y for Two Rigidly Connected, Planar Manipulators on
mechanism modeled without constraint equations have been shown by Independent, VerticaUy Compliant Bases
this study to be a set of DAE's where the differential equations
correspond to unknown deflection variables and the algebraic equations
corespond to unknown joint forces. Converting the equations to 5. SUMMARY
standard form results in an index I system because aF 2/ay is non-singular. A single unknown joint force is unique to each algebraic A general formulation of inverse dynamic models for all compliant
equation which makes the rows of F2/ay always linearly independent mhanisms is presented whem the model is obtained by substitution
as shown by the example equations for the planar manipulator on a of prescribed joint motions into the equations of motion for the system.
vertically compliant base given in Figure 9. The resulting equations for compliant mechanisms modeled with and

without constraint equations are shown to be solvable index 2 and
ginal variables index 1 DAE systems, respectively. Relevant characteristics of DAE

system and solutions of these equations ae discussed. Stable andsate space variables accurate numerical solutions can be obtained by BDF substitution and
application of Newton's method to the resulting set of equations.

F1 '12 '93 The formulation and solution procedures have been used to definethe inverse dynamic model of legged locomotion on natual terrain.
Y1 Y2 Y3 Foot-soi interactions aurm modeled with non-linear force-deflection

tmlationships nmlting in a fully compliant model and determinateII "1solutions. The mechanism stutr and joints am considered to be

rigid while joint damping and backdrive effects are included in the
W20Ymodel Stable solutions am being calculated with two to five NewtonaF"y ations Per timestep. The locomotion model is currently being used

for gait and control system simulation studies of a multi-legged robot
unde development at the Field Robotics Center, Carnegie Mellont- _J Universty.

Fig. 9 oFyy for a Planar Manipulator on a Vertically Compliant Base

If the mechanism has closed kinematic chains modeled with
constraint equations, additional algebraic equations and non-state
variables corresponding to the constraint equations and Lagrange
multiplies, respectively, are included in the equations of motion.
Thesn additional equations make aF2ay singular because the constraint
equations are independent of the non-state variables (Le., variables not
having derivative terms in the equations). The non-zer rows of
cI y at always linearly independent because a single unknown joint
force is unique to each algebraic equation that corresponds to joints
with specifled trajectories (i.e.. actuated joints). This linear
indepenence is shown by the equations given in Figure 10 for two
igidy connected, planar manipulators on independent, vertically

compliant bases. Therefore, the inverse dynamic equations of motion
for a compliant, closed-chain mechanism modeled with constraint
equations re a solvable set of index 2 DAEs.

17

REFERENCES

Bayo. E., 1988, "Computed Torque for the Position Control of
Open-Chain Flexible Robots," Proceedings 1988 IEEE International
Conference on RobonCs and Automation, Vol. 1, pp. 316-321

Cottle, R. W., 1974, "Manifestations of the Schur Complement,"
Linear Algebra April. Vol. 8, pp. 189-211

Dado, M., and Soni, A. H., 1986, "A Generalized Approach for
Forward and Inverse Dynamics of Elastic Manipulators," Proceeding
1986 IEEE International Conference on Robotics and Automation, Vol.
1, pp. 359-364

Forrest-Barlach, M. G., and Babcock, S. M., 1987, "Inverse
Dynamics Position Control of a Compliant Manipulator," IEELIJural
of Robotics and Automation . Vol RA-3, No. 1, pp. 75-83

Gear, C. W., 1971, "Simultaneous Numerical Solution of
Differential/Algebraic Equations," IEEE Trans Circuit Theory CT-18.
pp. 89-95

Gear. C. W., 1988, "Differential-Aigebraic Equation Index
Transformations," SIAM 1. Sci, Stat. Comout. Vol. 9, No. 1, pp. 39-
47

Lotstedt, P., 1984, "Numerical Simulation of Time-Dependent
Contact and Friction Problems in Rigid Body Mechanics," SIAMJ.
Sci. 1aLComut_ Vol. 5. No. 2, pp. 370-393

Lotstedt, P., and Petzold, L., 1986, "Numerical Solution of
Nonlinear Differential Equations with Algebraic Constraints I:
Convergence Results for Backward Differentiation Formulas,"
Mathematics of Comnutaton, Vol. 46. No. 174, pp. 491-516

McClamroch, N. H.. 1986, "Singular Systems of Differential
Equations as Dynamic Models for Constrained Robot Systems,"
Proceedings 1986 IEEE International Conference on Robotics and
AuoainVol 1, pp. 21-28

Petzold. L, 1982, "Differential/Algebraic Equations are not ODE'S."
SIAM J Sci. Stat Comput. Vol. 3. No. 3, pp. 367-384

Petzold, L., and Lotstedt, P., 1986, "Numerical Solution of
Nonlinear Differential Equations with Algebraic Constraints II:
Practical Implications," SIAM J. Sci. Stat Commut. Vol. 7, No. 3,
pp. 720-733

18

19

A Perception System for a Planetary Explorer

M. Hebert, E. Krotkov, T. Kanade I
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract
To perform planetary exploration without human supervision.

a complete autonomous robot must be able to model its envion-
ment and to locate itself while exploring its surroundings. For
that purpose. we propose a modular perception system for an au-
tonomous explorer. The perception system maintains a consistent
internal representation of the observed terrain from multiple sen-
sor views. The representation can be accessed from other modules
through queries. The perception system is intended to be used by
the Ambler, a six-legged vehicle being built at CMU. A partial im-
plementation of the system using a range scanner is presented as
well as experimental results on a testbed that includes the sensor,
one computer controlled leg, and obstacles on a sandy surface.

1 Introduction
The unmanned exploration of planets, such as Mars, requires a
high level of autonomy due to the communication delays between
a robot and the Earth-based station. This impacts all the compo-
nents of the system: planning, sensing, and mechanism [6). In
particular, such a level of autonomy can be achieved only if the
robot has a perception system that can reliably build and maintain
models of the environment. We propose a perception system that is
designed for application to autonomous planetary exploration. The
perception system is a major par of the development of a com-
plete system that includes planning and mechanism design. The Figure 1: The Ambler
target vehicle is the Ambler, a six-legged walking machine being
developed at CMU (Figure 1, [11).

The perception system can be viewed as an intelligent mer- 2 Terrain Representation
ory that can be interrogated by external modules (e.g.. path plan- The basic internal representation used by the perception system is a
ning modules) while maintaining an internal representation of the the c terna each ced of th cntin systes o
world built from sensors as the vehicle navigates. The paper d- grid, the local ter n map, each cel of which contains ati ibutes of
dresses the choice of the basic representation maintained by the the terrain. A cell must contain at least the elevation of the terrain
system in Section 2 and the achitecture of the perception system uncertainty on heele ation dueitono ose thein Section 3. Alth~ough the ar:'twmxe is designed to handle a uncertainty is modeled as a Gaussian distribution, whose standard

in Sctin 3 Alhoug th isdesgnedto ande a deviation or is stored in the twarin map. Other attributes may
variety of sensors, we have focused on the use of a laser range det i soed th e teri mtp. Oh anributes
finder, since the first requirement for safe navigation of the robot include the slope, the surface texture o e tr. In additionu amibutes
is reliably modeling the geometry of the surrounding terrain. Sec- that are stored in a cell may be of non-geomeuic nature, such as
tion 4 describes the algorithms developed for the consruction of the color of the terrain. Several resolutions of the grid may be
terrain models from range images. Finally, Section 5 describes the maintained simultaneously.
experiments that were conducted to evaluate the perception system. On top of the base grid, higher level information can be rep-

resented in the form of labeled features in the grid, such as to-
pographic feaunes (hills. ravines. etc.), regions of homogeneous
terrain type, objects of interest that have been extracted (boulders.
rocks, etc.).

Other terrain representations ae possible. The surface could

1This research was sponsored by NASA uider Contme NAGW 1175. be represented directly by 3-D patches that either are approxima-
The views and cnclusions contained in this document am tle of the tions of the measured surface or are built directly upon the set of
authors and should not be interpreted as rpresenting the official policies, data points. In both cases, however. retrieving a region of interest
either expressed or implied, of NASA or the US Govemmen. from the map becomes a complex operation. Another possibility

20

is to represent only a higher-level description of the terrain, such need to know the internal workings of the perception system such
as a segmentation of the surface. This is not appropriate in our as the sensor used or the format of the internal representation.
case since some planning tasks need information at the lowest level The LTMM is the front end to the perception system, and
(elevation map). One example for the Ambler is to estimate how is responsible for processing queries and for activating the proper
stable a foot placement on the terrain would be, in that case a submodules. When a query is received, the manager first checks

surface description at a resolution that is well below the size of if the area of interest has been already processed at the requested

the foot is needed. By contrast with the alternative representa- resolution, if that is the case the requested information is extracted
lions, the terrain map representation as an elevation map is simple from the existing terrain map, otherwise the manager requests a
to manipulate, can include high-level information as well as high new image from the ISM that is processed and merged with the
resolution elevation data, and can be accessed by external modules current terrain map.
in a simple way by giving the boundary of the region of interest To be processed all queries must contain three pieces of in-
in the map. formation: a polygon that is the boundary of the region of interest;

a resolution that indicates at what level of detail the requested cal-

3 Architecture culations must be carried out on the terrain map? and the type
of information requested (elevtion, uncertainty, slopes, etc.). Be-

The perception system is divided into six logical modules (Fig. 2). cause all queries are expressed in 9, external modules do not need
The system communicates with external modules using messages to know the pose of the sensors. The transformation between a
that are routed through a central message handler 14]. The percep- sensor and the vehicle's base frame is stored internally by the per-
ion system is controlled by a front end--the Local Terrain Map ception system, while the current vehicle pose with respect to 9 is
Manager (LTMM)--that receives the messages. Once a message requested each time a query is received.
requesting data is received, the LTMM checks whether it is avail-
able in the current internal terrain map. If not, then the LTMM 3.2 Acquiring Sensor Data
instructs the Imaging Sensor Manager (ISM) to take a new image Instead of hardcoding the sensor interface into the LTMM. sensor
from the relevant sensors, and the terrain map from the new image data is obtained through the same query mechanism. Whenever
is merged in the current train map. The internal representation an image is requested, the requesting module sends a query to the
is a terrain map built with respect to a fixed reference frame, the ISM that includes the type of sensor and the type of data desired.
global frame 9. All the operations in the overall Ambler system The ISM is responsible for activating the requested sensor. The
are expressed with respect to 9. A separate module provides the ISM can be viewed as a virtual sensor that hides the details of the
vehicle pose in g. Since the terrain map is of interest only in sensors' interfaces from the perception system, thus allowing for a
a region around the vehicle, useless parts of the terrain map are more flexible way of changing sensor specifications. Because all
discarded by another module, the Scroller. queries are expressed in 9. the ISM is also responsible for request-

ing the position of the vehicle with respect to 9 from a module
that keeps track of the position of the robot either by dead reck-

CentraI outing or by using a navigation system. The other transformation
Pllw " that is needed in order to use the sensor data is the transformation

between sensor frame and vehicle frame; this transformation is

pre.cornputed by a calibration procedure and stored by the ISM at

LOcaW Tenn Map btarnaW initialization time. The composition of those two transformations,
(LTMUMI /SOew Manugat that is the transformation between sensor frame and 9. is returned

L Fa To2a MW O.l to the perception system along with the sensor data (Fig. 3).
(LTMO

/ 1 1
Awbngcmpttlf
adap. lesium, I~mfr"m es r

Laml Twain Map MUmw%

Lo.1n TutamMap MMge Parcention system

Lfcal TenWm* Map tM

Figure 2: Architectaire of the perception system Stamm Masegt

3.1 Accessing the Perception System
External modules communicate with the perception system by ex-
changing memages (Fig. 2). Two types of messages we used: Figure 3: The Imaging Sensor Manager

queries that am request for data, and replies that are used for send-
ing data in response to a query. The queries and replies are routed
and synchronized by a central module (4). The simplest exam-
ple of a query from a planning module would be a request for an 2F- exmple, a resolution of several tens of centimeten is sufficiet

elevation map in a given area for clearance checking. The main for checking that the path of the body is clear. Analyzing the stability of

advantage of this mode of access is that external modules do not one foot of the Ambler requires a resolution of a few centimeters.

21

3.3 Building the Terrain Map actualy merged for efficiency reasons. The maps are merged by

Once a query is received, a terrain map must be built within the combining the elevation values at each location of the map using

boundary of the region of interest. This is the role of the Builder the uncertainty values to obtain the maximum likelihood estimate

(Fig. 2) which constructs a terrain map given sensor data taken a of the eikvation. The Merger must also update the occluded areas

one position of the vehicle. The terrain map is computed at the of the current map.

requested resolution and includes the elevation and the uncertainty It is important to logically separate the matching and merg-

at each point. In addition to those two atributes, the Builder also ing operations. First of all, the matching operation may or may

implements the algorithms for computing other local attributes such not be necessary depending on the accuracy of the positioning sys-

as slope or surface texture as well as non-geometric attributes such tern. If a navigation system provides displacement estimates that

as color or terrain type depending on the available sensors. In are well below the resolution of the grids, the estimates will not

addition to computing the local attributes, the Builder also identifies be improved by terrain matching. Second, if raw sensor data is
stored along with past terrain maps, a new query requires only

the portions of the map that are outside of the fields of view of the sedgng ithst terrain maps aine que requies only
sensors, and those that we occluded by parts of the terrain.merging portions of the terrain maps since the displacements have

already been computed at the time the images were acquired. Fi-The Builder is optimized in several ways: It maintains maps nally, separating the two modules allows for experimenting with

at different resolutions so that it is not necessary to always coin- different matching algorithms, presumably the most difficult part

pute the map at finest resolution. Also, if a map at the desired offt syt h ing the saesu ctrl o the es t oft

resolution does not exist, the Builder will create one, thus allow- of the system. while retaining the same structure for the rest of the

ing for arbitrary resolutions. The Builder minimizes the amount system.

of computation by remembering both the regions of the world that Since the terrain map must grow as the vehicle moves and
haveoalreadyeen omputation bare rnd byorg the nst o aes o that as new sensor data is acquired, a third module, the Scroller, is
have already been compute d ofby storing the past images so that responsible for discarding the part of the map that is too far from
if a query falls within the field of view of an existing image i is the vehicle to be useful This can be viewed as sliding a window
not necessary to acquire and process a new image. centered on the current position of the vehicle; only data within

An implementation of a Builder that uses range images is this window is retained. The Scroller is motivated both by the need
described in Section 4. to prevent the size of the terrain map from expanding during the

course of a long mission, with the risk of memory overflow, and
3.4 Updating the Terrain Map by the fact that only the most recent terrain maps can be used with

Since the Builder constructs a terrain map from a single image, confidence due to the accumulation of errors in the displacement

new sensor data has to be acquired each time a new query is re- estimates between maps.

ceived. This is sufficient as a first approximation, however the 4 Elevation Maps from Range Data
perception system should be able to handle terrain maps built from
sensor data acquired at different positions. There are two motiva- The perception system is designed to use multiple sources of data.
tions for handling multiple frames. It is obviously more efficient Because geometric information is most important for local naviga-
to remember terrain maps built from previous frames rather than tion, we consider in this section the case of data from an active
recomputing everything at each step. A more compelling moti- range scanner.
vation is that merging multiple frames may be the only way to We use the Erim laser scanner, which delivers 64 x 256 range
provide the requested data. Such a situation occurs when parts of images by measuring the phase difference between a laser beam
the vehicle, usually a leg, lie within the field of view of the sensor and its reflection from a point in the scene [7]. The scanner mea-
and therefore occludes a part of the terrain map, in that case it may sures the range p in a spherical coordinate system in which 0 and
not be possible to extract the region of interest from the current 9 are the vertical and horizontal scaning angles, corresponding to
position. A second case in which multiple frames are needed is row and column positions in the image.
when data that is outside of the current field of view of the sensor Prior to operation, the position of the sensor with respect to
is needed. In the case of the Ambler, this is actually the standard the vehicle's coordinate frame must be computed. This is done
situation since, in the normal walking mode, the leg further behind by a calibration procedure that computes the position by observing
the body is moved to the front of the body which requires data markings on the leg using the range scanner at different known
behind the body so that the path of the leg can be checked for positions of the leg. A least-squares estimation algorithm estimates
clearance. For these reasons, the perception system must include the transformation between the coordinate system of the scanner
the capability to merge terrain maps from successive frames into a and the coordinate system of the vehicle. This transformation is
single terrain map. compounded with the transformation between vehicle and global

The responsibility for the management of multiple terrain frames by the ISM each time a new image is acquired.
maps is shared by two modules, the Matcher and the Merger The easiest way to convert the range images to elevations
(Fig. 2). The Matcher estimates the displacement between a new maps is to convert each pixel (p, 0, 0) to a point in space (x, y, z),
terrain map and the current internal terin map. The displacement which is straightforward knowing the geometry of the sensor and
is in general a 3-D transformation. It is estimated by matching fea. the transformation between sensor and global frames. This ap-
tares extracted from the maps, or by using a correlation technique proach has some severe drawbacks, however, such as the need for
that compares the two maps directly. Section 4 briefly describes an interpolation, the dependency on a particular coordinate system,
implementation of the latter in the case of terrain maps built from and the fact that it is not possible to limit the computation to a re-
range images. An initial estimate of the displacement is always gion of the terrain map because we do not know apriori where this
available either from dead reckoning or from a navigation system. region is in the image. Instead, we use the locus method described
Once the displacement is computed, the Merger is responsible for in [3). This approach has many advantages including the explicit
merging the new map into the current map. Actually, only the detection of range shadows, the representation of uncertainty, the
part of the map that is within the requested region of interest is independence of the algorithm with respect to a reference frame,

22

a straightforward extension to the case of multiple frames of data.
Furthermore, a major feature of the locus method is its ability to
limit the computation of the terrain map to any region in space,
thus facilitating the computation of the maps within the boundaries
of the queries of Section 3.1.

The terrain map building algorithms were evaluated on range
images taken by the Brim scanner. The test images were taken in
a construction site that exhibits the type of rugged terrain that we
are interested in. Fig. 4 shows a map built from one range image
using the locus algorithm. The resolution is 10 cm over a 10 x 10
m square.

Figure 5: Elevation map from 125 range images

5 Experimentation
A first version of the perception system of Fig. 2 is implemented.
This version includes the LTMM, 1TM Builder, and ISM. This
implementation includes the algorithms of Section 4 and uses the

4: Elevation map buil from one range image Erim scanner. This implementation of the system is used to vail-
Figure :date the interface on single range images. The system builds terrain

maps with currently two attributes: uncertainty and footfall evalu-

An extension of the locus algorithm allows for matching and ation. The latter is a measure of how good a footfall each location

merging terrain maps built from images taken from different posi- in the map would be, based on the local shape of the terrain. The

dons. The matching algorithm computes the best 3-D transforma- algorithms used for the footfall evaluation are described in [2].

tion between maps, while the merging algorithm computes optimal Three types of queries are currently recognized

combination of the elevation from the two maps given this trans- * Elevation map: This is a request for an elevation map within
formation. The map building from multiple frames was tested on a given region (polygon) with a given resolution.
sequences of Erim images as well as on synthesized images. Fig. 5 * Elevation and uncertainty map: This is basically the same
shows the terrain map obtained by merging data from four succes-
sive range images. The resulting terrain map is about thirty meters map is returned as well
long. In this example the images were collected along a general
path including a sharp turn (about 30"). The matching between o Footfall evaluation: This is a request for the best position of
consecutive terrain maps was performed by first matching features the foot within a region. Currently this request is processed
to obtain a first estimate of the transformation [3), and by using the by computing the stability of a circular foot at each point of
estimate a a starting point for the minimization of the difference the terrain map by using only the geometry of the terrain (2J.
between the two terrain maps that is used as the final transforma- Fig. 6 shows the result of processing a footfall evaluation
don for the merging. Experiments on synthesized images for which query. The lower left view displays an overhead view of the site
the transformation between images is known show that the error with the region of interested displayed as a shaded polygon. The
on the resulting transformation can be as small as the resolution of three other views are the map computed from a range image. The
the grid. The error in elevation is of the order of a few centimeters, lower right map is a map of the footfall evaluation in which the
increasing with the uncertainty as the points are further away from highest values correspond to the best footfall locations. The di-
the sensor. mensions on the lower left diagram are in meters. The resolution

These experiments show that the algorithms developed for of this query is 10 cm.
range data provide the type of terrain maps required for rugged, A testbed was built in order to test the fully integrated plan-
unstructured environments including variable resolution, arbitrary ning/perception/mechanism system. The testbed (Fig. 7) includes
reference frame, explicit uncertainty representation. and represen- a single leg. the range finder mounted on top of the "body" of the
tation of occluded areas. vehicle, and a 25m2 sandbox that simulates the terrain in which

23

tavel and a desired step length, the leg takes a series of steps.
pulling the body forward after each step. The locations of the
footfalls as well as the trajectory of the leg are computed using the
terrain maps from the perception system.

ss,.4.06.m. " For each step. the sequence of operations is as follows.

1. A region in which the foot may be placed to achieve the next
step is computed by the gait planner module.

2. The gait pluming module queries the perception system for
the best footfall position within this region. This query ac-
tivates the whole cycle of taing an image, computing the
terrain map. computing the footfall evaluation attiut and
relying.

4 -1 1 1 1 13. Given the footfall positions the leg recovery planning module
1 61 11 computes a path for the leg and sends a region wound this

path to the perception system requesting a map.

-s 4. Perception answers the query by sending back a map within
K. the specified region, including the uncertainty attribute.

5. The planning module uses the map to compute the locations
Figure 6: Processing a footfall query of intermediate points along the path of the leg. The leg is

moved to the goal location and the foot is lowted onto the
terrain using position control. The uncertainty is used as a

the rover will navigate. The testbed leg was built from an earlier safety margin both for the travel of the leg and for the actual
design, as a result it is slightly different from the legs in Figure 1. footfall. In the lawer case the foot is lowered to a position
The main difference is that the testbed leg uses rotational joints that is 2u above the nominal value reported in the terrain
while the design of Figure 1 uses prismatic joints. A real-time map, and then lowered using force control until it contacts
controller drives the leg to specified locations in Cartesian or joint the soil.
space. allowing for constraints on the velocity of the leg and the Repeated experiments with the "move-body" scenario with
forces applied to the fooL In addition, the body can be translated different terrain shapes and difent initial and goal configurations
along two parallel rails by controtng the two horizntal joints of of the leg have shown conclusively that the first version of the
the leg while keeping the foot on the ground. thus simulating the perception system performs reliably and allow the system to safely
motion of the body in the actual rover. The testbed is equipped walk around obstacles.
with a linear position sensor and two clinometers that together give Several lessons were learned during these experiments. Good
an estimate of the position and orientation of the rover with respect calibration between the sensor and the leg is essential for comput-
to the global ffume, ing reliable elevation value in the vehicle's reference frne. It is

important to use information already extracted when possible, if an
image is tae whenever a query is received we then run the risk to
have the leg in the field of view of the sensor occluding the region
of interes The solution to this problem is to include in the per-
ception system the algorithms that extract the relevant information
from the existing terrain map before acquiring new dat. Finally, it
is lem from thos experiments that more development is needed
a far as the computation of attributes is concerned. The only
attributes ae currently the footfall evaluation and the uncertainty.

6 Discussion
We have presented a perception system for an autonomous vehicle
designed for planetary exploration. The perception system uses
terrain maps as the basic inteal representation that is accessed
by external modules. Parts of the system have been demonstrated
using algorithms for building terrain maps from range images. The
current version of the perception system has been included in a
complete single leg testbed.

6.1 Improvements
Figure 7: The single leg testbed Several improvements ae needed in the current system. First, cal-

ibration is of critical importance for the successful operation of
The most complicated task that is used in order to test the the overall system. We therefore need to improve the calibration

perception system as part of the complete single leg testbed is the procedure to the point at which the mrm due to miscalibration are
so-called "move-body" task in which, given a desired length of minimal compared to the other sources of erors. This involves in

24

particular a more detailed analysis of the geometry of the mech- 6.3 Remaining Issues and Lessons Learned
ansm, a mor accrate model of the sensor, and more reliable In the course of developing this system we have encountered the
algorithms for the detection of calibration targets. usual fundamental issues in the design of autonomous systems [5],

The quality and accuracy of the terrain maps may also be ina- and had to make choices to overcome those problems. Two issues
proved. In particular, the uncertainty model may reflect the actual were of special interest the mode of synchronization between the
environment by using a more detailed model of the sensor measure- percepton system and the other modules, and the limitations due
ments. Another improvement is the extensive use of map merging to message-passing between modules.
to produce more accurate maps by combining many measurements The architecture is currently entirely query-driven in that the
at each point in the map. terrain maps are computed only in response to a specific query

The last improvement is in the area of exception handling, from another module. This may not be the best strategy in a

Currently, the perception system cannot recover gracefully from system that includes many other computation-intensive modules.

enors such as corrupted sensor data. bad transformation from cor- In that case, the perception system would be idle most of the time.

rupted position readings, or bad message handling. In order to A different strategy would be for the perception system to keep

have a robust system we need to design a mechanism to detect and computing the terrain map around the vehicle even if no query

recover from these conditions. has been received. That way, the perception would take advantage

of the idle time to perform some additional computations. The
main issue is for the perception system to be able to predict the

6.2 Extensions regions of the environment that will be "useful* to compute for
the future queries. This also requires a careful analysis of the

Further work is required to demonstrate a perception system that synchronization between modules so that this self-driven approach
can handle the tasks of a complete autonomous system. Other does not accidentally slow down the other modules.
sensors must be used in conjunction with the laser range finder Our experience with this system has been that the communi-
in order to compute non-geometric types of information such as cation bandwidth using conventional network technology is not a
the type of the terrain in a region. This is important both for limitation. In this application, shipping images and maps between
sampling tasks, which require the identification of specific tyae the different modules of the perception system and the other mod-
of terrain, and for the evaluation of footfall selection since the soil ules does not affect the performance of the overall system signifi-
compliance depends on the type of terrain. The best candidates ae Icantly. There are still some synchronization issues to be addressed,
color cameras and thermal cameras. We are working on integrating however. The most important one is to guarantee that the position
those sensors into the perception system. of the vehicle is correctly read at the time that an image is taken

Other sensors that should be added to the perception sys- (Section 3.2). which is not possible if there is too much of a delay
tern include sensors for short-range perception, such as proximity between the ISM and the module that sends the vehicle position.
sensors. Those sensors would be used in the final phase of the One solution is to oypass the central message handler completely
footfall to provide better control of the foot contact with the ter- for some of the low-level operations such taking an image so that
rain. Currently, the foot is lowered to a nominal value given by the communications are performed by direct memory transfer with
the elevation map, after which point it is slowly lowered until a minimal delay.
given force reaction is observed. This is a potentially dangerous
approach if the map is inaccurate at that point, or if the terrain has References
changed between the time the map was built and the time the foot [1] J. Bares, M. Hebert, T Kanade, E. Krotkov, T. Mitchell, R.
is moved. A proximity sensor would guarantee that the foot does Simmons, and W. Whittaer. Ambler An Autonomous Rover
not attempt to penetrate the ground. for Planetary Exploration. IEEE Computer. 18-26, June 1989.

The perception system uses only local information from its (2] C. Cailas, M. HebeM E. Krotkov, L S. Kweon, and T. Kanade.
sensors. A possible extension would be the addition of more global Methods for Identifying Footfall Positions for a Legged RoboL
information such as a large-scale map from an orbiter. The main In Proc. IEEE International Workhop on Inelligen Robots
issue is then to establish the relationship between the low-resolution and Systems, Tsuba, Ja, Septmnber 1989.
global map and the high-resolution local maps. This is essentially
a matching capability that can greatly enhance the performances of (3] M. Hebert, T. Kanade, and L Kweon. 3-D Vision Techniques

the rover. For instance, the rover could register itself with respect for Autonomous Vehicles. Technical Report CMU-RI-TR-88-

to large-scale terrain features from the global map. 12. The Robotics Institute, Carnegie Mellon University, 1988.

Finally, we must complete the inclusion of the matching of [4) R. Simmons and T. Mitchell. A Task Control Architecture for

multiple frames in the system. Map matching will give the rover Mobile Robots. In Proc. AAAI Spring Symposium, Stanford,

a "self-localization" capability, that is the ability to register itself California. March 1989.

with respect to its environment without relying entirely on special. (5] T. Stentz and C. Thorpe. Against Complex Architecture. In

purpose position sensors (Glinometers, dead reckoning, INS). It Proc. AAAI Spring Symposium, Stanford, California, March
has been our experience that those sources of position information 1989.
cannot be relied upon a all time because they do not necessarily 16) B. Wilcox. Session 3: Planetary Rovers. In Proc. SPIE Vol.
give an accurate description of the position and orientation of the 107: Mobile Robots IIl, 1988.
sensor at the time an image is taken. Furthermore, they have to be [71 D. Zuk, F. Pont, R. Franklin and V. Larrowe. A System for
carefully calibrated with respect to the perception sensors which Autonomous Land Navigation. Technical Report IR-85-540.
add another level of complexity to the already difficult calibration Environental Research Institute of Michigan. Ann Arbor.
problem. The solution will be to use the output of the position Michigan, 1985.
sensors as an initial estimate for the map matching process which
will provide the accurate position estimate actually used.

Experience with a Task Control
Architecture for Mobile Robots

Long-Ji Lin
Reid Simmons

Christopher Fedor

Abstract

This paper presents a general-purpose architecture for controlling mobile robots, and describes a

working mobile manipulator which uses the architecture to operate in a dynamic and uncertain
environment. The target of this work is to develop a distributed robot architecture for planning,

execution, monitoring, exception handling, and multiple task coordination. We report our progress to

date on the architecture development and the performance of the working robot. In particular, we discuss

temporal reasoning, execution monitoring, and context-dependent exception handling.

25

1. Introduction
The principal goal of this work is to develop a distributed robot architecture to support robot planning,

execution, monitoring, exception handling, and multiple task coordination. We have been developing
such a robot architecture, called he Task Control Architecture (TCA) [15]. TCA is designed for
controlling mobile robots that have limited computational and sensory resources, operate in uncertain,
changing (but relatively benign) environments, have multiple goals, and have a variety of strategies to
achieve goals and handle exceptions.

We have been developing TCA concurrently on two testbeds - the CMU six-legged Planetary Rover
(3] and the Heath/Zenith Hero 2000 mobile manipulator robot (12]. The CMU Rover project is an
attempt to develop an autonomous robot that can survive, navigate, and acquire samples on the Martian
surface. The Hero testhed is an indoor platform that has been used to drive the architecture design. The
current capabilities of the Hero include collecting cups in the laboratory and recharging itself.

Our initial implementation on the Hero robot [12], which was developed in an ad hoc manner, had
several shortcomings. It was slow and slack in reacting to environmental changes. It could not protect
itself and recover from failures properly. It also could not change its focus to higher-priority tasks or
respond to requests from human advisors. After re-implementing the testbed using mechanisms and
functions provided by TCA, most of these shortcomings have been minimized. The robot is now faster
and more robust. It can react to environmental changes in a reasonable time frame, and it has a variety of
strategies to recover from failures.

The following are the capabilities that TCA currently supports.

Concurrent planning and execution. Robots often take a significant amount of time in
constructing plans. Since planning and execution are activities that often need different
resources, both can occur concurrently. However, this concurrency sometimes needs to be
constrained. In many cases, the robot must act on an incomplete plan and defer some specific
decisions until more information can be acquired. On the other hand, to minimize risk to the
robot, one might want to completely plan out a goal before executing any of its sub-
commands.

* Reacting to environmental changes. To accomplish tasks, and even to survive, the robot
must be reactive. It must always be aware of environmental changes, and respond to them
appropriately and in a timely manner. Some environmental changes invalidate current plans,
while others may demand the robot to change its focus completely.

" Error recovery. In complicated, changing environments, failures are bound to occur. When
they do occur, the robot must change its plan to meet the new situation. Error recovery is
often context-dependent, that is, the same failure may have to be handled differently,
depending on the robot's intentions. Since in a benign environment, the failed plan is often
close to being correct, it is desirable for the robot to be able to fix and re-use the problematic
plan, instead of always replanning from scratch.

" Coordinating Multiple Tasks. With many simultaneous goals but limited resources, the
robot must be able to dynamically prioritize and schedule its various tasks based on their
urgency, relative costs, likelihoods of success, etc. Currently, only simple-minded strategies
can be specified using TCA, but we envision taking a more knowledge intensive approach in
the near future.

Various TCA mechanisms have been developed to support these capabilities.

* Distributed processing. TCA is a distributed architecture with centralized control. A robot
system using TCA includes a central control and a number of concurrent, application-specific

26

processes. We believe that a centralized control architecture facilitates the coordination of
multiple complex robot behaviors, while the distributed processing allows for concurrency in
planning, execution, and perception.

*Resources. TCA provides a mechanism to schedule the use of the robot's limited
computational and physical resources. A task is automatically queued by TCA until the
needed resources are available. Resource reservation, together with temporal constraints (see
below), provide synchronization mechanisms to control distributed robot systems.

* Task trees and temporal constraints. In TCA, planning and execution are separate
activities and can be performed concurrently. The interleaving of these activities can be
constrained by imposing temporal constmints among the planning and achievement times of
subgoals. TCA explicitly maintains the goal/subgoal hierarchies, called task trees. Task
trees, together with the temporal constraints, are TCA's representation of plans.

a Concurrent monitors. Concurrent monitors enable the robot to watch for environmental
changes in parallel with normal task execution. Because task execution and monitoring occur
concurrently, the performance of tasks will not be (significantly) slowed down, while still
enabling environmental changes to be detected as early as possible.

* Exception handling. TCA provides a general mechanism for handling planning time
failures, execution time errors, and contingencies. The robot implementor can specify
different strategies for handling the same exception in different contexts. One benefit of
having this mechanism is to allow the user to separate robot behaviors for normal situations
from these that handle failures or contingencies. In this way, complex robot behaviors can be
developed incrementally, and exception handling can be flexibly defined. At present, the
mechanism is still under construction but some primary results have been obtained.

Table 1-1 summarizes the supporting relationsidps between the TCA mechanisms and desired robot
capabilities. A mark "X" in an entry of the table indicate that the mechanism in that column is used to
support the capability in that row. Note that although synchronization by itself is not a capability needed
by robots, it plays an important role in the distributed environment of TCA.

Table 1.1: The supporting relationships between mechanisms and capabilities

Mec_ n Task Trees
Distributed Resources & Temporal Concurrent Exception

bi eis" Pr:ocessinq Constraint Monitors Handling

Synchroni- X X
zation

Concurrent
Planning I X X
Execution

Reacting
to Changes X X

Error X X
Recovery

Coordinating
Multiple X X
Tasks

The rest rf this paper presents the Hero robot system, the Task Control Architecture, and their
performance. Section 2 describes the hardware setup of the system and gives a scenario to illustrate how
the Hem robot performs tasks. Section 3 discusses the various mechanisms of TCA. Section 4 describes
the robot system in detail. Performance of the robot and TCA is evaluated in Section 5. Comparisons
with related work arc given in Section 6. Finally the paper is concluded in Section 7.

27

2. Scenario
Our mobile manipulator robot, the Heath/Zenith Hero 2000, is a commercially available wheeled robot

with a two-finger hand (see Figure 2-1). The robot operates in an unstructured laboratory, which is
observable through a ceiling-mounted camera (see Figure 2-2). The Hero robot has three sonar sensors: a
rotating sonar on top, a forward-pointing sonar fixed to its base, and one mounted on the robot's hand
which can be repositioned relative to the body. In addition, the robot has a battery charge level sensor, a
rotating light intensity sensor, and touch sensors on the fingers. Using existing vision software [10], we
developed a 2D vision subsystem for the ceiling camera. We also developed algorithms for navigation
and manipulation in the indoor environment.

•IMF

Figure 2-1: The Hero 2000 Robot

When the system is started up, the robot is given several high-level goals, including (1) collecting cups
discovered on the lab floor and placing them in a receptacle, (2) avoiding obstacles, and (3) recharging its
battery when necessary. The rest of this section presents a scenario to illustrate how the robot achieves
and coordinates these goals.

For the cup collection task, the robot monitors its 2D vision map for the appearance of cups on the
floor. An asynchronous perception process continually takes a picture and updates a world map. Once a
new map is built, the robot scans the map to find cup-like objects. In this scenario, two cup-like objects
are spotted, and the system sets up two cup-collecton goals and temporally orders them so that the closer
object will be explored first.

The robot then plans and executes a path to the first object. While moving, it monitors for obstacles in
its path. A monitor, whose temporal extent continues until the object is picked up, is created to ensure
that the target object does not disappear (e.g., someone else may pick it up). Upon arriving near the
object, the robot uses its wrist sonar to measure the height and width of the object and matches them
against its cup models. If a satisfactory match is found, the robot plans and executes actions to pick up
the object. In parallel with measuring and picking up the object, the robot uses its overhead vision map to
pre-plan a path to the receptacle so that a path plan is ready for execution when the cup is picked up. The

28

"N'.. "X"

'|

Figure 2-2: Overhead View of Laboratoy as Seen by Robot

robot then uses the plan to navigate to the recptacle, where it deposits the cp.

Next, the robot attends to collecting the other object. While moving toward the object, the robot
notices (from either its overhead vision or its sonar sensors) that an object appears in into its path. The
robot stops immediately and waits to see if the object will move away soon. If the obstacle does not
move, the robot plans a detour by modifying the blocked path plan. If no detour can be found, the robot
replans a path from scratch. If still no path can be found, the robot abandons this cup-collection goal.

In this scenario a detour is foun~d, so the robot continues to navigate to the object. The robot finally
arives near the object and starts measuring it. At this point, the battery charge monitor notifies the robot
that its battery charge is getting low. Based on the simple-minded strategy: "if the robot has arrived near
the object complete the task before going over to recharge", the robot creates a recharge goal with
temporal constraints indicating that the new goal will be attended to after the cup-collecton goal is
achieved or aborted. The robot continues and subsequently discovers that the object is not a cup at all. It
gracefully terminates all ongoing and pending activities and monitors that were set up for collecting the
object, and then it chooses to pursue its next goal, which is the recharge goal.

3. The Task Control Architecture
TCA is designed to implement capabilities we believe to be necessary for autonomous robots. TCA is

a distributed arehitecture with centralized control. An application of TCA includes a cental process and
a number of concurrnmt, application-specific processes, called modules. Communication occurs via
coarne-grained message passing between modules, with all messages being routed through the central
process.

To facilitate experimentation with different control schemes, TCA is built as a layered system so that an
implementor can choose which layers to use - higher layers provide more functionality specific to robot
control, but lower layers provide flexibility to implement alternative control schemes.

29

At present, the implemented layers include:

e Communication layer that supports distributed processes under centralized control;

e Behavior layer for querying the environhent, specifying goals, executing commands, and
altering the robot's internal state

* Resource layer for allocating and managing physical and computational resources;

* Task management layer for building hierarchical plan structures and specifying temporal
conswaints between planning and execution of various goals in the plan;

* Monitor layer for concurrently monitoring user-selected aspects of the robot's external and
internal environments;

* Exception handling layer for specifying context-dependent strategies for handling plan
failures, execution errors, and environmental changes.

In addition, other layers to support multi-task coordination and user interaction are planned.

3.1. Communication Layer
The base layer of functionality provided by TCA is the sending and receiving of messages between

modules. Modules can be wrinten in different languages (currently both Lisp and C are supported) and
run on different machines (using the UNIX TCP protocol). In essence, TCA provides a simple remote
procedure caU(RPC) interface from a caller in one module to a procedure in a possibly remote module.
The main difference between typical RPC implementation and TCA is that the central control determines
which module handles messages and in what order they are handled.

A potential problem with centralized control is that the central process may become a bottleneck.
Experimentally, a round-trip time for messages of under 10K bytes is about 50 milliseconds. Since this
time is small compared with the time taken by image processing, planning, and the robot's actuators, the
centralized control has not been a problem on our current testbeds. Besides, the potential bottleneck
problem can be overcome by using high-speed hardware (e.g., the Nectar [2]) and adhering to some
conventions, such as using coarse-grained behaviors to limit the amount of module-to-module
communication.

3.2. Behavior Layer
TCA provides several types of primitive building blocks needed to construct robot behaviors. The

primitive behaviors are implemented as different classes of messages, built on top of the communication
layer. The classes differ mainly in their control flow. For example, query messages block the user's code
until a reply is received, while goal and command messages are non-blocking and report success or
failure directly to the central control.

" Query messages are requests to provide information about the external or internal
environment, such as obtaining a world map or determining the robot's dead-reckoned
position.

" Goal messages are intended to support top-down, hierarchical planning. A typical response
to a goal message would be to issue other (sub)goal and/or command messages based on the
results of planning. Unlike queries, goal messages are asynchronous and non-blocking. That
is, the central control may queue the goal until resources become available; in the meanwhile,
the module sending the goal message can continue. The rationale is that non-blocking goal
messages give the implementor greater flexibility in controlling the achievement of goals

30

(e.g., interleaving planning and execution).

" Command messages ae used to execute actions. Like goal messages, command messages
are asynchronous and non-blocking. Distinguishing goal from command messages is done
mainly for interleaving planning and execution.

" Constraint messages provide a way to alter the robot's internal state. For example,
constraint messages can be used to add expectations about its future behaviors.

3.3. Resource Layer
It is crucial for an autonomous agent to effectively allocate its limited resources in order to satisfy its

goals. The robot must detect when tasks need competing resources, and must prioritize and schedule
tasks when conflicts occur. In TCA, a resource is an abstract entity that is used to manage the handling of
messages. A resource may be associated with a computational entity, such as a module, or with a
physical entity, such as a motor or camera.

Resources are created with a capacity - the number of messages the resource can handle
simultaneously. A message received by the central control is queued until the resource that handles the
message has available capacity. Currently, messages to the same resource are handled in FIFO order,
subject to the temporal constraints imposed by the task management layer.I

Sometimes, a module might need control over a resource for some period of time, particularly one
associated with a physical item. For example, if a vision module is acquiring an image, it might want to
ensure that the robot does not move during that period. To facilitate this, TCA includes mechanisms for
reserving resources, in effect, preventing other modules from utilizing the resource until the reservation is
explicitly canceled. Resource reservation is one of the synchronization constructs in TCA.

3.4. Task Management Layer
The task management layer provides mechanisms for organizing sets of messages into hierarchical task

trees (see Figure 3-1). For each goal, command, or monitor mesage sent by a module, TCA adds a node
to the task tree as a child of the node that issued the message. The resulting tree is an execution of graph
of messages used to complete a given task. In addition, facilities have been developed for tracing and
manipulating the task tee, such as killing off subtrees, suspending them, and adding new nodes. These
facilities will provide functionalities needed by some of the higher layers, such as the exception handling
layer (see Section 3.6) and the planned multi-task coordination layer.

Another important purpose of this layer is for scheduling tasks. The layer contains a general facility for
reasoning about time. In TCA, by default planning and execution can occur concurrently. Interleaving of
planning and execution can be constrained by imposing temporal constraints on the planning times of
goals and achievement times of goals, commands, and monitors. For example, a module might specify
that the achievement time of 0l precedes that of G2, but the planning time of G2 precedes that of GI
(e.g., first achieve pick up the cup, then bring it to the receptacle, but plan the route to the receptacle
before planning how to pick up the cup). Similarly, a module might constrain a goal to be completely
planned before any of its sub-commands can start being achieved.

'We pin to add more sophisticated scheduling mechanisms in the funne.

31

GI

Figure 3-1: Sample task tree

The mechanisms for reasoning about temporal constraints am based on the Quantiy Lattice (13], an
arithmetic reasoning system, that integrates relationships, arihuncic expressions, qualitative and
quamnuauve2 information to perform a wide range of common arithmetic inferences. In TCA, it is used to
maintain a consistent partial order of time points and to answer queries about relationships between time
points and about the durations of intervals.

With the temporal mechanisms provided, robot implementors can formulate a fairly wide rangc of
different constraints to take advantage of concurrencies in the distributed environment of TCA. Together
with resource reservation, the temporal constraints provide synchronization mechanisms to control
distributed robot systems.

3.. Monitor Layer
To react to environmental changes, robots must first be able to monitor the environment and detect

changes in time. Although in the real world many things may go wrong at any time, robots with limited
sensory resources, such as ours, cannot afford to monitor everything that goes on in the environment. The
monitor layer provides mechanisms to monitor user-selected aspects of the environment and report
detected changes to the central control for handling. Monitors in TCA run concurrently with normal task
execution. For example, the Hero robot attends to the cup collection goal while monitoring for obstacles
and its battery charge.

A monitor specifies the condition to be monitored, and the time, relative to other messages, when
monitoring is to take place. When the condition holds, a typical action would be to send an exception
mmage to the central control, which will decide what to do based on the environment and context in

2The qutiutative reasoning capability of the Quantity Lattice is not yet utilized by TCA.

32

which the exception occurred (see Section 3.6).

Two classes of monitors are implcmcntcd: point monitors and interval monitors. Point monitors, which
test the monitor's condition just once, are useful for checking static, execution time conditions, such as
checking the pre-condition or post-condition of a command or goal. Interval monitors, which have a
temporal extent, are useful for checking for environmental changes over time.

TCA has two variations of interval monitors: polling and demon monitors. Polling monitors implement
synchronous polling of conditions at a fixed frequency, while demon monitors implement asynchronous
demon-invocation. For instance, the battery monitor of the Hero robot, which is a polling monitor,
periodically checks the battery charger and raises an exception if a low charge is detected. The cup
appearance monitor, implemented as a demon monitor, is invoked whenever a world map is updated by
the asynchronous perception process, and checks the world map for cup-like objects, raising exceptions if
such objects are found.

Monitors can also be used to construct conditional plans. For instance, suppose there are two strategies
to achieve goal G, but we do not know in advance which one will be applicable. We can set up a monitor
to check the environment and choose the appropriate strategy at execution time.

3.6. Exception Handling Layer 3

Exceptions can be divided into three classes, according to the ways they are detected.
" failures detected in planning (e.g., no path to the cup);

" errors detected in executing commands (e.g., wheel slippage);

" contingencies detected by monitors (e.g., low battery charge).
TCA employs the same mechanisms to handle the three different types of exceptions.

Exception handling is often context-dependent: the same exception might need be handled differently,
depending on the environment and where in the plan the exception occurs. For example, a wheel
blockage is a failure if it is detected when the robot is navigating in an open space. But it could be a
signal of a successful docking if the robot's goal is to dock on the charger. To facilitate context-
dependent exception handling, TCA supports mechanisms for associating exception handlers with
contexts at planning time and automatically invoking the handlers when exceptions are raised. Various
utilities are also provided to enable handlers to fix problematic plans.

The context of an exception handler is established by attaching the handler to a task tree node. This
association is done dynamically as the task tree is created. When an exception is raised, TCA searches up
the task tree, starting from the node where the exception arose, to find a handler specific to that exception.
The first matched handler is then invoked to handle the exception.

Exception handling is achieved by editing the task tree, for example, by deleting part of it and inserting

some new nodes. The exception handlers can use the task tree operations provided by the task

management layer to access, scrutinize, and then modify the task tree. Modifications to task trees may
include terminating or suspending the execution of subtrees, and adding new nodes to the task tree, which

3Cufreny, only the framework of the exception handling layer has been implemented, and various supporting
mechanisms are still under construction.

33

is then expanded using the normal TCA mechanisms. To illustrate, Figure 3-2(a) shows a situation where
a battery charge monitor is set up and the robot is actively attending to the cup-collection goal. When the
monitor detects a low battery charge, the low battery charge handler attached to the mot node is chosen
to handle it. After checking the battery charge and the progress of the cup collection, the handler decides
to recharge first and finally ends up with the situation in Figure 3-2(b), where the monitor has been
canceled, the cup-collection goal has been suspended, and the recharge goal has been added and become
the current goal.

Rt*low battery Ro
Noe charge handler Nd

suspended
battery
charge coilect chre collect
monitor cae cup

(a) (b)

Figure 3-2: Exception handling

If an exception handler finds it cannot actually handle the situation, it can raise an exception itself.
When the central control receives an exception from an exception handler, the search for a capable
handler is resumed, starting from the node where the previous handler was found and searching up the
task tree. This process is repeated until the exception is successfully handled. As a catchall, TCA
attaches a general exception handler to the root node of the task tree. When invoked, this general handler
simply deletes the failed task along with all its subtasks.

This TCA approach to exception handling is efficient. First, the invocation of exception handlers is
fast, because only a simple search on the task tree is involved. Second, TCA allows a problematic plan to
be fixed and re-used as much as possible. For example, when moving obstacles appear unexpectedly, the
Hero robot first waits for obstacles to move away. If they do not move away, it tries to plan a detour by
modifying the blocked path plan. If no detour is found, a new path is planned from scratch. Only if no
path is found is the task terminated.

4. The Hero Robot System
The Hero robot system, which uses TCA, presently consists of five modules plus the central control

(see Figure 4-1). In this section, we describe the functionalities of the modules and how they interact with
each other.

Handler Builder

Figure 4-1: Organization of the robot testbed

34

Controller. This module, which controls the robot via either a radio link or an RS232 cable, executes
navigation commands (e.g., turn, move) and manipulation commands (e.g., raise arm, open grippers). It
also handles queries that involve using sensors on the robot, for example, reading the battery charge level,
and measuring the height of an object using the wrist sonar.

The Controller also keeps track of the robot's trajectory and handles trajectory queries. Because of the
control error, the uncertainty about the robot's position will grow over time. The Controller utilizes a
covariance matrix representation (16] to model the control error, and compounds the uncertainty
whenever the robot moves or turns. This uncertainty information is primarily used by the Perception
Query Handler to determine the likelihood of hitting obstacles in the course of navigation.

We also implemented reflexive guarded move commands directly on-board the Hero. These give the
robot a higher degree of reactivity than could be gotten from centralized controL While the robot is
moving or turning, the on-board CPU detects wheel slippage and blockage by monitoring the motor
encoders. At the same time, the sonar sensors are used to detect obstacles in the robot's trajectory. In
both cases, the reflex action is to stop the robot immediately, stahilizing it. Then the Controller signals a
failure so that the system can rectify the situation using the exception handling mechanisms.

World Map Builder. This module continually takes and processes images of the lab (every 20
seconds or so), and updates a world map, which is then forwarded to the Perception Query Handler. We
have found that this asynchronous process has substantially increased the performance of the robot
compared with our previous system. For example, since a relatively up-to-date world map is always
available, the robot does not need to wait for processing an image in order to find a cup-like object or to
plan a path.

To identify the robot in the image, the World Map Builder first gets the robot's dead-reckoned
trajectory from the Controller. Based on the trajectory and other information such as the size of the robot,
the robot region can often be distinguished from other object regions. Two failures, however, can be
encountered. First, the robot may not be successfully spotted, because the robot region, for example,
overlaps another visual region. This failure is handled by taking an image, moving the robot a few
inches, taking another image, and comparing the differences in the images to spot the robot. The second
failure occurs when the light in the lab is turned off. This exception is handled by asking humans to turn
on the light or going to sleep (i.e.. turning off the power to all circuitry except the memory) if no help is
secured.

Perception Query Handler. The Perception Query Handler provides three kinds of functionality.
First, it updates the world map upon receiving a new map from the World Map Builder. Second, it
handles perception demons. When a new world map is received, perception demons am invoked to check
conditions that they monitor. Presently there are two kinds of demons that can be set up - cup appearance
monitors and object monitors (for checking if an object remains at a specified position on the floor).

The third task of this module is to handle perception queries, including
e calculating the vicinity of an object in order to approach it,

* checking if a path is clear, based on uncertainty reasoning,

* reducing the uncertainty about the robot's location and orientation by using vision.
As mentioned previously, the Controller explicitly models the uncertainty of the robot's status. When the
robot is executing a path plan, the Perception Query Handler, given the uncertainty information, would be

35

asked to determine (1) if the path is clear, (2) if yes, how far the robot may safely proceed along the path
before the uncertainty cone overlaps object regions (see Figure 4-2). If the uncertainty has grown to the
extent that collisions with obstacles are possible, the Perception Query Handler uses vision to reduce the
uncertainty. To do this, it first takes a picture of the robot and calculates the robot status (including visual
uncertainty) based on properties of the robot's shape and internal model of sensor uncertainty. A new
robot status is then obtained by merging the observed and expected status [16].

-:RS

Figure 4-2:
Interpreted Version of the Image from Figure 2-2 with Planned Path and Uncertainty

Cone. The brightened line shows the final computed path to a cup-like object, while the
dimmer line is the original path before optimization. The shaded area in the uncertainty
cone indicates how far the robot may safely proceed.

Planner. At present most of the navigation and manipulation planning is done in this module. The
Planner has a collection of procedures, each of which is intended to achieve a goal. When executed to
achieve goals, the procedures typically send queries, create subgoals, issue commands, set up monitors,
specify temporal constraints, and/or associate exception handlers with contexts.

As an example, the procedure for handling the cup collection goal does the following:
I. Adds approach object goal. The first step is to navigate to the vicinity of the target object.

In the course of navigation, the robot models uncertainty and watches out for obstacles.

2. Sets up object monitor. This monitor watches for the disappearance of the target object.
Temporal constraints are added to indicate that the monitor starts from the beginning of the
cup collection goal and ends at the beginning of the grasp cup goal (see below).

3. Adds servo to object goal. Once arriving near the object, the robot utilizes its wrist sonar to
estimate its distance and orientation relative to the object. This information is used to
compute the locomotion commands to reduce the differences between the estimated and
desired distance and orientation. To overcome sensing and control errors, this goal is re-
generated recursively until the differences are within acceptable limits. This recursive
implementation makes it possible to break the time-consuming servoing loop for handling
contingencies.

4. Adds iden6fy object goal to measure and classify the object

5. Adds grasp cup goal. If the object is a cup, it is grasped by a procedure specific to that cup.
A point monitor, which utilizes the base sonar, is set up for checking if the grasping

36

succeeds.

6. Adds approach receptacle goal. Once picked up, the cup is brought to the receptacle.
However, temporal constraints are imposed so that the path planning can begin once the
robot arrives near the cup.

7. Sets up holding monitor. This interval monitor periodically rads the sensors on the fingers
to make sure that the cup does not drop on the way to the receptacle.

8. Adds deposit command to drop off the cup in the receptacle.

9. Associates appropriate exception handlers to various task tree nodes.

User Interface. Presently the User Interface merely allows the user to enter commands, add goals, and
set up monitors. Facilities for supporting a friendly user interface are being planned.

5. Performance
Our experience with the testbed shows that TCA is a helpful tool for building robot behaviors.

e TCA is easy to use and programs developed under TCA are usually easy to extend and
modify. This is partly because TCA encourages modularity of programs. For example,
normal robot behaviors, monitors, and exception ha .ling can be developed separately.

* TCA provides a fair amount of expressive power to facilitate implementing complex robot
behaviors. For example, TCA makes it easy to specify and control the interleaving of
planning and execution, concurrent monitors, and exception handling.

Due to its deliberative nature, TCA cannot be used to implement low-level reflex behaviors that
demand sub-second responses to environmental changes. To minimize the interval between the time an
exception is detected and the time the exception handler gets executed, the implementors themselves must
adhere to a principle: each of the robot's primitive actions must be designed to finish in a small time
frame. In other words, a time-consuming action must be repeatedly divided into smaller ones, so that
each does not take much time. The reason is that when an exception is raised, the chosen exception
handler might be blocked by other ongoing primitive actions, because of resource conflicts. If so, the
handler must wait for these actions to finish. Guaranteed reactivity is an interesting research area and we
plan to investigate it in the near future.

Roughly speaking, the robot system described above is quite successful in surviving, collecting cups,
and maintaining battery charge. It typically takes about 3-5 minutes to collect a cup, depending on the
difficulty of individual tasks (e.g., smaller cups usually demands more time). If a cup is placed away
from the perimeter of the visual view and not occluded, the robot can locate and collect it most of the
time. Although the vision subsystem can be easily fooled by small non-cup objects (e.g., small box,
sneaker), those objects am usually identified as non-cups by the sonar sensors when the robot approaches
the objects (but they can result in considerable wasted time).

The robot system is about twice as fast as the previous sequential version. This is mainly because the
world map is updated by an asynchronous process; this is a big win, because image processing takes
much time. Another speed-up results from concurrent monitors and concurrent planning and execution.

The robot system is also relatively robust compared with the previous version. This is mainly because
the concurrent monitors enable exceptions to be found early and the robot has a variety of strategies for
handling exceptions. It is also helped by the reflexive guarded commands and their integration into the

37

TCA mechanisms.

The robot, however, is still susceptible to dangers. These dangers mainly arise from the robot's
inability in sensing. For example, the robot has no sensor to detect imminent arm collisions and prevents
them in advance. The vision processing is slow, so the robot might use out-of-date information and make
wrong decisions. Although these problems can be minimized (but not overcome) by adding more sensors
and using faster hardware, that is not the purpose of this work.

6. Related Work
An alternative approach to building reactive and robust robots is that taken by the subsumption

architecture [4]. The main features of this approach are (1) hard-wired, layered robot behaviors, (2) no
explicit internal model of the world, (3) no explicit representation of goals and plans, (4) no central
control, and (5) continual monitoring. Many of these characteristics are shared by some other approaches,
such as [1] and [11]. In contrast to these architectures, TCA has a centralized control and makes the
notion of goals explicit, allowing the robot to reason about them. These differences make TCA more
flexible in coordinating complex robot behaviors. The use of explicit plan representations enables TCA
to pre-plan for the future, not just figure out "what to do next". TCA advocates selective monitoring,
because sensors are often scarce resources and the use of them should be carefully scheduled. These
differences result in two architectures with very different capabilities [6]. While the subsumption
architecture is good at handling low-level sensor and effector actions (e.g., car chasing), it is not yet clear
how complex behaviors (e.g., planning, exception handling) can be coordinated in the architecture. On
the other hand, while with TCA fairly complex behaviors have been realized on the Hero robot, it is not
well-suited to handling low-level reflex activities. Rather than competing architectures, however, it is
reasonable to combine the strengths of both approaches, for example, by using the subsumption
architecture for reflexive control, which talks to TCA for higher-level control. In fact, our experience
with the guarded move commands (see Section 4) suggests that this might be a promising way to
implement robust, intelligent robots.

The Procedural Reasoning System (PRS) (7] consists of four main components: a database of beliefs
about the world, a goal stack, a library of procedural plans, and an interpreter. PRS is similar to TCA in
several, aspects. For example, both are concerned with combining planful, reasoned behaviors with
reactivity. The goal stack and procedural plan representation used in PRS is similar to our task tree
structure plus temporal constraints. The main difference between the two systems is that PRS is more
concerned with reasoning and planning, while TCA mainly focuses on the execution, monitoring, and
exception handling.

The Reactive Action Package (RAP) system [5], which is very similar to PRS, is another work which
addresses reactivity and adaptive execution of plans. Uke TCA, the RAP system provides various
mechanisms for supporting resource reservation, temporal constraints, monitoring, and exception
handling. The RAP system, which is a sequential system, is based on the idea of situation-driven
execution, much like the subsumption architecture. This viewpoint is different from that of TCA. While
supporting reactivity, TCA still allows the robot to plan for the future. For example, the Hero robot can
measure the potential cup, monitor its battery charge, and pre-plan the path to the receptacle concurrently.
Both systems also differ in the ways exceptions are handled. When exceptions are raised, the RAP
system examines the context at run-time to find the appropriate method for re-achieving the failed task,
while in TCA only a simple search on the task tree is needed.

38

The exception handling mechanisms of TCA are similar to those in some programming languages such
as Ada [9] - when an exception occurs, program execution is transferred to the exception handler with a
matched name that is closest to the exception point in the context (i.e., the runtime call-stack in Ada or the
task trees in TCA). However, they differ in three aspects. First, TCA allows the exception handlers to
manipulate the task trees explicitly, while explicit manipulation of the call-stack in Ada is prohibited.
Second, popping and pushing the call-stack is always simpler than killing and adding new subtrees,
because of the temporal constraints placed on the task trees. Maintaining the desired temporal constraints
between tree nodes while modifying the task trees is a difficult problem, which we have not solved
completely. Third, task tree nodes are not killed while TCA is searching for capable handlers, so the
exception handlers can examine the failed node and its ancestors to help in debugging [14].

7. Conclusion
We have designed and implemented TCA, a general-purpose task control architecture, for the control of

mobile robots. TCA is designed to be used for robots with multiple tasks, and limited computational and
physical resources, that operate in an uncertain and changing, but relatively benign, environment. The
design of TCA is based partly on experience gained from our first version of the Hero testbed. That
version, developed in an ad hoc manner, had several shortcomings, such as brittleness, unawareness of
environmental changes, etc. By using TCA, we have re-implemented the system in a more disciplined
way. The current robot can navigate in a changing (indoor) environment, avoid obstacles, collect cups on
the floor, and at the same time watch for failures and contingencies, recover from failures, and go
recharge when necessary.

The features of TCA that result in the Hero robot's success and that, we believe, will facilitate the
building of intelligent, robust robots are (1) distributed processing, (2) resources, (3) task trees and
temporal constraints, (4) concurrent monitors, and (5) context-dependent exception handling. The
distributed environment enables robot activities such as planning, sensory data processing, monitoring.
and plan execution, to be performed concurrently. The resource mechanisms enable robots to schedule
the use of their limited resources. By using the temporal mechanisms, the user can implement intelligent
robots that are able to act on an incomplete plan when not enough information is available to make a
decision, and to take advantage of parallelism by planning ahead when needed information is obtainable.
ConcurTent monitors, which allow robots to acquire information from the environment while executing
tasks, gives robots the opportunity of reacting to environmental changes and changing their focus for
contingencies or opportunities. The exception handling mechanisms enable robots to dynamically choose
context-dependent strategies for handling contingencies, planning time failures, and execution time errors.
The mechanisms also allow robots to re-use a failed plan by making changes in it, or even to change their
focus completely.

Another important feature of TCA is that it facilitates modular and incremental design of complex robot
systems. In TCA, planning, execution, monitoring, and exception handling are all logically and
functionally separate activities. This enables one to build systems incrementally - first building
behaviors that plan and execute, then adding features (usually by adding new code with few changes to
the existing programs) to take advantage of concurrency in planning and execution, to monitor for
exceptional situations. and to handle those situations intelligently.

Despite these encouraging results, much more work remains to be done. In particular, we plan to
extend TCA to support various knowledge-intensive decision-making capabilities [8], such as, scheduling
various tasks based on their urgency and relative cost, choosing optimal plans based on the analysis of

39

various plans' strength, limitation, resource usages, time constraints, etc.

Although building complex, robust robot systems is still very much an art, we believe that with the use
of high-level architectures, such as TCA, we can make the process easier. Through experience with
different robot systems (the CMU planetary Rover also uses TCA), and analysis of the requiremcrI' for
different environments and robot configurations, we are converging on a set of mechanisms to support the
building of such robot systems.

8. Acknowledgements
We express our gratitude to Robert Eric Wolpov, who has been adding new sensors to the Hero robots

and maintaining them in good health. We thank Tom Mitchell and Andrew Phillips, who helped develop
the first version of the testbed. Lonnie Chrisman has provided valuable comments on TCA design and
Kevin Ryan helped develop the guarded commands. We are grateful to them. We also thank John Allen,
Jim Moody, and Steve Shafer for their assistance in setting up the testhed. This research has been
supported by NASA under Contract NAGW- 1175.

40

References

[1] Agre, P.E., Chapman, D.
Pengi: An Implementation of a Theory of Activity.
In Proceedt"h of AAAI-87, pages 268-272. 1987.

[2] Amould, E.A., Bitz, FJ., Cooper, E.C., Kung, H.T., Sansom, R.D., and Steenkiste, P.A.
The Design of Nectar: A Network Backlane for Heterogeneous Multicomputers.
Technical Report, CMU-CS-89-101, Carnegie Mellon University, 1989.

[3] Bares, J., et aL
Ambler. An Autonomous Rover for Planetary Exploration.
In IEEE Computer, VoL. 22, No. 6. 1989.

(4] Brooks, R.A.
A Robust Layered Control System for a Mobile Robot.
In IEEE Journal of Robots and Automation, vol. RA-2, no. 1. 1986.

[5] Firby, R.J.
Adaptive Execution in Complex Dynamic Worlds.
Technical Report, YALEU/CSD/RR #672, Yale University, 1989.

(6] Flynn, A.M., and Brooks, R.A.
MIT Mobile Robots - What's Next?
In Proceedings IEEE Robotics and Automation, pages 611-617. April, 1986.

[7] Georgeff, M.P.
A System for Reasoning in Dynamic Domains: Fault Diagnosis on the Space Shuttle.
Tech Note 475, Al Center, SRI International, 1986.

[8] Georgeff, M.P., Ingrand, F.F.
Decision-Making in an Embedded Reasoning System.
In Proceedings of lJCAI-89, pages 972-978. 1989.

[9] Habermann, A.N., and Perry, D.E.
Ada for Experienced Programmers.
Addison-Wesley Publishing Company, Inc., 1983.

[10] Hamey, L., Printz, H., Reece, D., and Shafer, S.A.
A Programmer's Guide to the Generalized Image Library
Carnegie Mellon University, 1987.

[11] Kaelbling, L.P.
An Architecture for Intelligent Reactive Systems.
Tech Note 400, Al Center, SRI International, 1986.

(12] Lin. LJ., Mitchell, T.M., Phillips, A., and Simmons, R.
A Case Study in Autonomous Robot Behavior.
Technical Report, CMU-RI-89-1, Robotics Institute, Carnegie Mellon University, 1989.

[13] Simmons, R.
Commonsense Arithmetic Reasoning.
In Proceedings of AAAI-86, pages 118-124. 1986.

[14] Simmons, R.
A Theory of Debugging Plans and Interpretations.
In Proceedings of AAAI-88. 1988.

41

[15] Simmons, R., Mitchell, T.M.
A Task Control Architccture for Mobile Robots.
In Stanford Spring Symposium. 1989.

[16] Smith, R.C., and Cheeseman, P.
On the Representation and Estimation of Spatial Uncertainty.
In The Iraernational Journal of Robotics Research, pages 56-68. 1986.

42

